
Cooperative Caching Plan of Popular Videos for 
Mobile Users by Grouping Preferences 

Yi-Ting Chen Chia-Cheng Yen 
CS Department 

National Tsing Hua University 
Hsinchu, Taiwan 

melissana21@gmail.com    setsuna01gn@gmail.com 

Yu-Tai Lin     Jia-Shung Wang 
CS Department 

National Tsing Hua University 
Hsinchu, Taiwan 

ytlin1993@gmail.com   jswang@cs.nthu.edu.tw
 

 
Abstract—Mobile traffic has grown fast in recent years, 
particularly for delivering popular video clips at anywhere. Based 
on a combination of Macro Cells and several Small Cells (SC) 
technologies, HetNets is gaining increasing attention due to the 
surge demand on high-quality mobile video services. To avoid
bottleneck in the limited capacity of backhaul link, Mobile Edge 
Computing (MEC) is a promising solution, which computing and 
caching in the mobile edge in such a way that the buffered video 
can be delivered with less network latency and traffic load. Our 
goal is to build a cooperative caching plan for serving popular 
video clips over HetNets under the Joint Transmission (JT)
method in MEC environment with least possible backhaul traffic.
In the training phase, categorize similar users to clusters and to 
SCs using the well-known spectral clustering algorithm. Then 
aggregate the users’ requests to be the request profile of the 
corresponding SCs. Third, share the caching space among 
cooperated SCs with the help of distributed LT codes. During the 
serving phase, new coming users will be assigned to appropriate 
SCs based on similarity between users and SCs. Our simulation 
results show that the backhaul traffic rate can decrease from 38% 
to 10% (or 62% to 19%) if cache space is acceptable. 

Index Terms—Caching; Clustering; LT codes; MEC; Small 
Cells; Joint Transmission 

I. INTRODUCTION 
s the CISCO’s VNI Mobile Forecast report [1] mentioned 
that mobile data traffic has grown 4,000-fold over the past 

10 years. Mobile video will grow at a CAGR of 62 percent 
between 2015 and 2020, and three-fourths of the world’s 
mobile data traffic will be video by 2020. 

To cope with large amount of mobile video requests under 
limited backhaul capacity, HetNets is gaining increasing 
attention due to the surge demand on high-quality mobile video 
services. To avoid bottleneck in the limited capacity of 
backhaul link to the core network, with the emergence of 
Mobile Edge Computing (MEC) [2] technology, which 
computing and caching in the mobile edge (such as Small Cells, 
SCs) in such a way that the buffered video can be delivered with 
less network latency and traffic load to lessen network stress. 
Caching popular video clips locally can help to reduce network 
traffic load. However, due to the capacity of cache is limited, 
traditional replacement policy may lead to unacceptable amount 

of cache miss. There are two different ways to design the 
caching plan: assigning requests to SCs or assigning users to 
SCs. For the method of assigning requests to SCs, large 
amounts of requests of a certain video cause the problem of load 
balancing. In the paper, we propose a cooperative caching 
solution of assigning users to SCs, based on the promising Joint 
Transmission (JT) method of CoMP scheme considered for 
LTE-A systems [3]. 
    In training phase, users are grouping and assigned to SCs. To 
cope with limited cache size, SCs cooperate to share their 
caching space by LT codes. SCs are equipped with 
computational apparatus and cache space, meaning they have 
ability to communicate with each other. The mobile users can 
download the video data from multiple cooperative nodes to 
achieve bandwidth aggregation under JT. 
    Our goal is to maximize the Local Delivery Rate (LDR): 

 

Or minimize the Global Download Rate (GDR): 

 

The contributions of this paper are summarized as follows:  
(i) A cooperative caching plan of MEC is proposed for 

serving popular video clips over HetNets with least 
possible backhaul traffic. 

(ii) A valuable clustering scheme of users with recapping 
users’ preferences. 

(iii) SCs download the encoded video by LT codes and decode 
cooperatively to share their caching space. It also has 
benefit of load balancing. 

(iv) The (LT) coded packages can be randomly distributed 
among SCs. Also, can be randomly download instead of 
selecting the specific data.  

(v) In service phase, users can achieve the goal of bandwidth 
aggregation. 

 
We briefly describe the related works and the concept of LT 

codes in Section 2. In Section 3, the clustering method of 

A

762

2018 IEEE 16th Int. Conf. on Dependable, Autonomic & Secure Comp., 16th Int. Conf. on Pervasive Intelligence &
Comp., 4th Int. Conf. on Big Data Intelligence & Comp., and 3rd Cyber Sci. & Tech. Cong.

978-1-5386-7518-2/18/$31.00 ©2018 IEEE
DOI 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00132



 
 
 
 
similar users, the cooperative caching plan of MEC, and the 
parallel downloading scheme are described and discussed. The 
experimental and simulation results are presented in Section 4. 
Some conclusions drawn are presented in Section 5. 

II. RELATED WORKS 

A. LT Codes with Belief Propagation 
Luby Transform codes (LT codes) [4] is one of the Fountain 

codes [5], proposed by Michael Luby in 2002. The coding 
complexity is quite low because LT codes employ the 
particularly simple operation XOR. The concept of LT codes is 
users, which can recover K original source symbol with high 
probability when thy receive enough (little larger than K) 
encoded packets which generated from a given set of source 
symbols by the servers. Fig. 1 (a) shows the encoding process 
of LT codes. For example, the packet of degree 3 is encoded 
with source symbols (2 3 5). 

Belief Propagation (BP) is a well-known and efficient 
algorithm for decoding LT encoded data. As the example of 
Fig. 1 (a), the BP algorithm chooses the degree 1 packets as the 
ripple set, so the first ripple set is {2}. The encoded packets 
connected with symbol 2 are removed. Then symbol 5 can be 
decoded, so the new ripple set is {5}, and so on. 

B. Video Services in Wireless Network 
According to the widespread of mobile devices, mobile data 

traffic has grown rapidly. To cope with the problem, many 
researchers have proposed methods or designs to deliver videos 
efficiently. 

1) Cooperative on mobile devices 
In [6], Keller et al. consider that a group of users, within 

proximity of each other, request for the same video in a short 
time. For example, a group of friends want to watch the same 
show together, but sharing on one phone screen is not 
comfortable. Hence, they all want to download and watch in 
their own devices. A system was proposed to cooperative 
streaming by smartphones, scheduling which parts of the video 
each phone should download from which server. Notice that, in 
in our solution, the servers do not have to worry about 
partitioning and scheduling tasks because, with LT codes, the 
coded data can be randomly distributed and randomly 
downloaded. By device-to-device connection, each user can 
watch the complete video by downloading some segments only. 
 

2) Content Delivery by Cooperative Caching 
The idea of using wireless distributed caching (assignment of 
files to cache services) to help in networking was proposed and 
examined in [7] [8] [9][10]. The contribution of [7] and [8] is 
to formalize the distributed caching problem, prove that it is 
NP-hard, and give an approximation algorithm to minimize the 
expected download time. Considering that SC users have 
different preferences over different video types, a caching 
strategy was proposed in [9]. By a reinforcement learning 
algorithm, each SC learns the popularity distribution of each 
group to decide how to cache. In [10], a version of parallel LT  

 
Figure 1. LT encoding and delivery 

 
downloading and decoding was proposed to save the cache 
space. In [11], address issue on user mobility and user QoS 
prediction to improve on the accuracy of service 
recommendation in mobile edge computing. 

C. Community Detection in Social Networks and Web Videos 
Categorization 

The linking graph of objects (users or videos) is tremendous 
large in YouTube-like services thus categorization is needed for 
analyzing its grouping structures. Some methods are proposed 
[12] [13] [14] to solve the community detection problem. In [14], 
a cluster affiliation model for big networks was proposed. It 
also presented a new way of calculating to discover the 
overlapping community. In [15], a so-called spectral clustering 
technique was presented and analyzed, it makes use of the 
eigenvalues (spectrum) of the similarity matrix of the data to 
perform dimensionality reduction. 

III. PROPOSED METHODS 
In this section, we proposed two methods to decrease the 

global download rate for different applications. One is 
clustering mobile users with similar preference. Section III.A 
proposes such a cooperative caching plan. In the training phase, 
categorize similar users to clusters and to SCs using the spectral 
clustering algorithm. Then aggregate the users’ requests to be 
the request profile of the corresponding SCs. Third, share the 
caching space among cooperated SCs with the help of 
distributed LT codes. During the serving phase, new coming 
users will be assigned to appropriate SCs based on similarity 
between users and SCs. Another is streaming a video 
cooperatively with mobile devices by users. Section III.B 
presents such a cooperative mobile scheme. Here, the global 
download rate is decreased by multiple mobile users while 

763



 
 
 
 
downloading the same video and decoding cooperatively. 

Our methods are designated for MEC, or precisely the 
HetNets with Joint Transmission. Assume there are some 
mobile users (u1, u2,…,um) and corresponding request profiles 
(uP1, uP2, …, uPm). Every request profile consists of a sequence 
of video clips issued by the user. 

A. Cooperative Caching Plan for Small Cells 
Given users’ preferences, first, we aim to find an assignment 

(users to small cells) such that the bandwidth of backhaul 
services is minimized under the constraints that the caching 
space of each SC is limited. The flow chart is shown in Fig. 2. 
In training phase, users with similar preference are grouped 
together as a cluster through the spectral clustering algorithm 
[15]. Note that some inappropriate clusters are further 
recombined so as to balance the requests in the post-process 
stage. Then, clusters are assigned to SCs. Finally, based on the 
design of LT codes, we can let some SCs (cooperative SCs in 
the figure) with highly similarity to share their cache space 
eventually. In serving phase, new users are assigned to SCs 
according to the (profile) similarity between users and SCs. In 
this paper, we assume that the users’ preferences will not 
change rapidly, therefore, each cluster may sustain its 
momentum a good while. 
 
1) User Clustering with the spectral clustering [15] 

Given users’ profiles, to calculate the similarity between 
users, we exploit the BIGCLAM (Cluster Affiliation model for 
Big Networks) [14] to explore the similarity between users i and 
j, p(i,j): 
                     Eq. (1) 
 
More precisely, if users i and j issued the request of the same 
video v closely, this probability will be adjusted with a 
weighting factor w(i, j), where the average cache time will be 
discussed in Section IV. 

So the probability p(i,j) will be modified as the following 
form: 
   

Eq. (2) 
Then, the spectral clustering algorithm [15] is utilized to 
categorize users. The pseudo codes is listed in Algorithm 1. 

  
Figure 2. Flow chart of the cooperative caching plan. 

 

 
The number of cluster k is estimated by calculating 

modularity Q of partitioning subgraph b of graph G [16], see 
below: 

 

Higher value of Q means better partition and the value is 
ranging from 0.3 to 0.7. Here we set k to be 10 because of the 
highest value of Q in our demonstrative benchmarks. 

2) Post Processing 
In this stage, some larger clusters and some smaller ones will 

be well-adjusted. We observed that user groups are separated 
into two particularly characteristics: topic-specific users and 
(YouTube) addicted users. As shown in Table 1(a), the topic-
specific users usually request few specific videos, and the 
(YouTube) addicted users watch almost every popular video, 
e.g. Cluster 3. Notice that this phenomenon, there is a large 
number of clusters of topic-specific, and a few number (may be 
one or two) of clusters of addicted-users, is common. And the 
latter always have the larger cluster sizes. 

Assigning each cluster to a small cell straightforwardly will 
lead to some problems, such as the unbalance issue. 
Consequently, some SCs that serve oversized requests, the 
cached videos will be changed frequently, since the cache space 
is limited, 

To balance the requests, we split the larger clusters by sorting 
out users randomly and merge the smaller ones. As the case in 
Table 1(a), Clusters 0, 1, 7 are merged to Cluster 0 in Table 1 
(b), the Clusters 5, 8 are merged to Cluster 1. And Cluster 3 is 
split into Clusters 2, 3 and 4 in Table 1(b). After post 
processing, each cluster will be assigned to a SC finally. 

3) Cooperative Caching (Serving Phase) 
After training phase, in each cluster (or SCs), the users’ 

requests will be aggregated to be the request profile of each 
cluster (or SCs).  

With the help of LT coding, our goal is to share the cache 
space among similar SCs. Then, several SCs can cooperate to 
download and (LT) decode together, that is, each SC just needs 
to download and cache 1/m of video size if m SCs working 
corporately. The six group of corporative SCs are illustrated in 
Table 1(c). According to the similarity between clusters (SCs), 
there are two styles of grouping as shown in Table 1(c), the first 
one, which are separated from a large cluster, will connect to 

764



 
 
 
 
each other, e.g. Clusters 2, 3, and 4. Other clusters, which are 
similar enough (• threshold), will cooperate according to the 
similarity of SCs’ profiles. As Table 1(c) shown, Cluster 0 
cooperates with 6, and Cluster 1 cooperates with 8. 

 
TABLE 1. CLUSTERING RESULTS: BEFORE AND AFTER POST 

PROCESSING. 
 

4) Assignment of Users to Clusters (Serving Phase) 
Each trained user was already assigned to a cluster in the 

training phase. Here, the new coming users will be assigned to 

the appropriate clusters on account of the similarity measure 
between users and clusters’ profile using Eq. (1). Because of the 
cold start problem for the new users, we let the assignment 
change a few times till converge. As mentioned before, we have 
observed a categorization phenomenon, one or two re-
assignments is enough for both the topic-specific and addicted-
users clusters.  

5) Cache Replacement (Serving Phase) 
Due to limitation of cache space, requesting a video which is 

not cached may cause cache replacement. Consider the hit ratio 
of a cache, which defines how often a request (video) is actually 
kept. Accurately, this index is concerned with our global 
download rate.  Several efficient replacement policies are 
proposed to improve the hit rate (for a given cache size). 
According to our experience and others, there is no significant 
performance difference between the Least Frequency Used 
(LFU) policy and the Least Recently Used (LRU) policy, so 
LFU is employed in the paper. Indeed, caching the most popular 
video clips in each group has the benefit of increasing times of 
serving directly instead of downloading to lead higher backhaul 
loading. 

B. Cooperative Streaming with Mobile Devices 
Here we briefly discuss another application of streaming 

video cooperatively with mobile devices to demonstrate the 
performance gain of parallel downloading of LT codes.  The 
flow chart is shown in Fig. 3(a). The method of clustering is the 
same as discussed in Section III.A. After clustering, in each 
group, the probability of the users who watching the same 
videos simultaneously looks high. So, each user can easily 
discover the suitable partners to download the video 
cooperatively. 

As illustrated in Fig. 3 (b), this example shows that User 2 
can find and ask Users 1 and 3 to join the downloading 
corporately. If both agree, one of the users is assigned to be the 
role of cache (who does not have to download the video), say 
User 3. Other users download 1/2 of encoded video packets and 
decode together. As shown in Fig. 3(b), when a symbol is 
decoded by User 2, it then will be broadcasted to others. 

The role of cache plays an important part to avoid decoding 
failure when some packet loss occurs. If the cache receives 
nothing within a period, say one second, the cache will send a 
message to the other nodes, and ask them re-broadcast the 
missing symbols again. 

765



 
 
 
 

 
Figure 3. Cooperative video streaming among three users. 

IV. EXPERIMENTAL AND SIMULATION RESULTS 
In this section we first present and discuss the 

implementation of LT packets dispersing and decoding for 5 
mobile devices and show the experimental results as well. Then 
give the simulation results of cooperative video streaming. 
Finally, the simulation of cooperative caching plan for small 
cells is presented and discussed. 

A. LT Codes Implementation on Mobile Devices 
1) Implementation Details 

The test video is “Vidyo.yuv” of length of 11 seconds. The 
working devices consist of two tablets (HTC Nexus 9 and 
ASUS Nexus 7) and three smartphones (Sony Xperia SP, Sony 
Xperia Z5, and HTC M9). The steps of LT encoding and 
dispersing as shown in Fig. 1 (b). First, the video of length of 
11 seconds is LT encoded to M packets (with redundancy ). 
Second, these packets are dispersed devices randomly. 
Meanwhile, all devices decode together through trading 
(sending and receiving) their belongings to regenerate the 
whole video. The parameters M and  are set as 240 and 1.2, 
respectively. 

2) Results and Discussions 
Fig. 4 (a), (b), and (c) depicted computation and communication 
costs for various settings (# of decoding nodes and cache size). 
The red line represents the number of sources received from 
other decoding nodes, and the blue line is the number of sources 
decoded by the node itself. For example, as shown in Fig. 4(a), 
in case of (2 nodes, 1/2 cache), each node decodes half of total 
sources locally, and receives remaining sources from the other 
node. Comparatively, in Fig. 4(b), in case of (4 nodes, 1/4 
cache), each of them decodes less and receives more from the 
other three nodes. In Fig. 4(c), (4 nodes, 1/2 cache), lots of 
sources can be decoded rapidly. That is, the more the 

cooperative nodes, the more the performance gain in decoding 
time. 

 
Figure 4. The results of LT packets dispersing and decoding on mobile 

devices. 

766



 
 
 
 
B. Cooperative Streaming with Mobile devices 
1) Parameters Settings 

Our simulation is implemented over a range of 20 20 square 
meters. Users are distributed by the following Poisson 
distribution, where k is the number of nodes,  represents the 
density of nodes per unit area, and A is the area size. 

 

The real traces from a campus network measurement on 
YouTube traffic between June 2007 and March 2008 [17] is 
employed. The busiest ranges of 1 hour and 4 hours within the 
trace in 01/29/08 are chosen for assessment. 10 popular videos 
and corresponding 37 users are chosen within the busiest 1-hour 
interval, 30 popular videos and corresponding 97 users are 
chosen within the busiest 4-hour interval. The length of video 
is set to 10 minutes. For example, when User 2 requests for a 
video, the user will ask his neighboring users to download 
cooperatively. When user 2 is still watching the video and User 
1 also requests the same video, the user does not need to 
download again because the video has already been cached by 
User 1. 

2) Results and Discussions 
Fig. 4 (d) shows the Local Delivery Rate (LDR). The red lines 

represent 1-hour case, and the blue lines represent 4-hour case. 
The solid lines are the results of using Eq. (1), and the dashed 
lines are the results of using Eq. (2). The figures show the 
benefit of considering time interval between requests 
timestamp. By comparing two cases, the LDR in 1-hour case is 
higher because the considering requests are concentrated on a 
smaller period. In contrast, users find more neighboring users 
to cooperate in the 4-hour case, however the LDR is lower. 
Users with similar preferences may not request the same video 
closely because of the sparse requests. 

For considering the limitation of distance between users, if 
the users are close to each other within 5 meters, the LDR will 
become lower because most users cannot find cooperative 
neighbors. When the distance limitation increases up to 15 
meters, the LDR is elevated to 50%. The highest LDR only 
approach to 60% because the requests of real traces are not 
dense enough, users who send requests closely are limited. 

C. Cooperative Caching Plan for Small Cells 
1) Parameter Settings 

The real traces from a campus network measurement on 
YouTube traffic between June 2007 and March 2008 [17][18] are 
used. The traces from 01/29/08 to 02/12/08 are chosen. The first 
week traces are for training, and the second week traces are for 
testing. In our simulation, the most popular 10 videos, 
corresponding 925 users are selected in the training phase. The 
users are clustered to 9 clusters and assigned to 9 small cells. 
Assumed that videos have the same size. Various cache space 
sizes are compared in our simulation.  

Our simulation is implemented on personal computer with 
Intel(R) Core(TM) i5-4440 3.10GHz CPU, 8.00GB RAM and 

Win7-64bit OS. In this paper, three similarity measures are 
compared, first measure, Eq. (2), is presented in Section III.A, 
second measure modifies Eq. (2) using cosine similarity, and 
third measure (baseline, for the reference purpose only) is 
random, that is, users are assigned to SCs randomly. 

2) Results and Discussions 
Consider Fig. 5(a)-(b). Three similarity measures (Exp (Eq. 

2): blue line, Cos: orange, Random: green) are compared with 
different cache sizes (1-3 cached videos). The solid lines are the 
results with cooperative caching, and the dashed lines are the 
results without cooperative caching. Again, the first week traces 
are for training, and the second week traces are for testing. 

As shown in Fig. 5(a), only the users who have already 
assigned in the training phase are tested. There are only 218 
trained users who issue requests of 10 popular videos are 
selected in training phase. Consider the Global Download Rate 
(GDR) depicted in Fig. 5(a) with 3 cached videos. Both the Cos 
and Exp. with cooperative caching are below 10%, however the 
Random without cooperative caching is near 38%. It is clear 
that, the GDR result of clustering is completely better than that 
of the random assignment. And the GDR is quite high (over 
60%) when the cache size is one if without cooperative, since 
the cache cannot share. And when cache size is too small to 
cache videos, cache replacement occurs. Sharing cache can 
decrease the miss rate thus lower the GDR. 

As shown in Fig. 5(b), all the users are considered in the 
testing phase. New coming users are assigned to the appropriate 
SCs according to the similarity between user’s requests and the 
SCs’ profile. There are 908 (218 in case 5(a)) new coming users 
requesting for top-10 videos in the second week. Most of them 
change groups less than twice because the number of their 
sending requests is less. As mentioned before, we have 
observed a phenomenon, the clusters are either topic-specific or 
addicted-users. Some new coming users issue requests larger 
than 10 times, but they change clusters once only. It indicates 
that users are interested in specific videos, thus they will not 
change clusters often. The total number of requests is 1950. The 
improvement of user assignment is revealed even they are not 
trained. Fig. 5(b) show that our method of assigning the new 
users is promising. Comparing to the random assignment, when 
cache size is of three videos (satisfactory), the GDR of our 
proposed (Exp. with cooperative caching) is 19%, and the 
random assignment without cooperative caching is above 62%. 
The meaning of 62% implies cached videos will be frequently 
replaced, especially for the (YouTube) addicted users, 
therefore, the data replacement becomes worse.  

The proposed cooperative caching plan has the benefit of 
load balancing, as depicted in Fig. 5(e), That is, downloading 
the encoded packets using LT codes and decoding 
cooperatively really share and balance the caching space. 

Also, the requests of the top-30 videos are taken to evaluate 
the performance gain. As shown in Fig. 5(c), comparing with 
Fig. 5(a), the performance gain demotes because more videos 
are required to be cached concurrently. Limited (poor) cache 
space leads to more cache miss. 

767



 
 
 
 

Fig. 5(d) is corresponding to Fig. 5(b), the better performance 
gain due to plenty of new coming users are topic-specific, 
therefore, assigning new users to a suitable clusters (SCs) 
becomes more effective. Comparing to the random assignment, 

when cache is of three videos, the GDR of proposed method is 
33%, however the random assignment without cooperative 
caching is 64%. 

 

 
Figure 5. The results of the proposed cooperative caching plan for small cells 

 

768



 
 
 
 

V. CONCLUSION 
Mobile traffic is growing fast, especially mobile video 

downloading. Caching in the network edge is a way to decrease 
network latency. A cooperative caching plan is proposed in the 
paper to achieve the goal of building a cooperative caching 
method for serving popular video clips over MEC environment 
with least possible backhaul traffic.  

In the training phase, categorize similar users to clusters and 
to SCs using the spectral clustering algorithm. We reveal a 
useful phenomenon: there is many clusters of topic-specific, 
and a few number (may be one or two) of clusters of addicted-
users. And the latter always have the larger cluster sizes. We 
aggregate the users’ requests to be the request profile of the 
corresponding SCs. And, share the caching space among 
cooperated SCs with the help of distributed LT codes. The (LT) 
coded packages can be randomly distributed among SCs. Also, 
can be randomly download instead of selecting the specific 
data. Furthermore, it also has benefit of load balancing. During 
the serving phase, new coming users will be assigned to 
appropriate SCs based on similarity between users and SCs. 
And, users can achieve the goal of bandwidth aggregation. Our 
simulation results show that the performance gain (GDR) can 
decrease from 38% to 10% for trained users, or 62% to 19% for 
all test users, if cache space is of 3 videos. And decreases from 
64% to 33% for trained users, or 77% to 53% for all test users 
if cache space is of one video only.  

REFERENCES 
[1] Forecast, Cisco VNI, “Cisco Visual Networking Index: Global Mobile 
Data Traffic Forecast Update, 2015–2020 White Paper,” Cisco Public 
Information, February 2016. 
[2]Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher and Valerie 
Young, Mobile Edge Computing: A key technology towards 5G, ETSI White 
Paper No. 11, September 2015.  
[3] 3GPP TR 36.819, “Coordinated multi-point operation for LTE physical 
layer aspects,” V.11.1.0, December 2011. 
[4] M Luby, “LT Codes,” in Proceedings of the 43rd Annual IEEE 
Symposium on Foundations of Computer Science, November 2002, pp. 271–
280. 
[5] J.W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital 
Fountain Approach to Reliable Distribution of Bulk Data,” Proceedings of 
ACM SIGCOMM ‘98, Vancouver, September 1998, pp. 56-67. 
[6] Keller, Lorenzo, et al, “MicroCast: Cooperative Video Streaming on 
Smartphones,” the 10th ACM international conference on Mobile systems, 
applications, and services, June 2012, pp. 57-70. 
[7] Golrezaei, N., Shanmugam, K., Dimakis, A. G., Molisch, A. F., & Caire, 
G, “Femtocaching: Wireless Video Content Delivery through Distributed 
Caching Helpers,” IEEE INFOCOM, March 2012, pp. 1107-1115. 
[8] Shanmugam, K., Golrezaei, N., Dimakis, A. G., Molisch, A. F., & Caire, 
G. “Femtocaching: Wireless Content Delivery through Distributed Caching 
Helpers,” IEEE Transactions on Information Theory, December 2013, pp. 
8402-8413. 
[9] M. S. ElBamby, M. Bennis, W. Saad, and M. Latva-aho, “Content-aware 
user clustering and caching in wireless small cell networks,” IEEE Intl. 
Symp. on Wireless Communications Systems (ISWCS), Barcelona, Spain, 
August 2014, pp. 945–949. 
[10] Chia-Cheng Yen and Jia-Shung Wang, “Distributed delivery of popular 
videos over Ultra-dense networks,” IEEE Symposium on Computers and 
Communication (ISCC), Larnaca, Cyprus, July 2015, pp. 116-121. 
[11] Shangguang Wang, Yali Zhao, Lin Huang, Jinliang Xu and Ching-Hsien 
Hsu, “QoS prediction for service recommendations in mobile edge 
computing,” Journal of Parallel and Distributed Computing, Accepted 22 
September 2017. 

[12] Wang, Zheshen, et al, “Youtubecat: Learning to categorize wild web 
videos,” IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), June 2010. pp. 879-886. 
[13] U. Gargi, W. Lu, V. Mirrokni, and S. Yoon, “Large-scale community 
detection on YouTube for topic discovery and exploration,” the Fifth 
International AAAI Conference on Weblogs and Social Media, July 2011. 
[14] Yang, Jaewon, and Jure Leskovec, ”Overlapping community detection at 
scale: a nonnegative matrix factorization approach,” the sixth ACM 
international conference on Web search and data mining, February 2013, pp. 
587-596. 
[15] Ng, Andrew Y., Michael I. Jordan, and Yair Weiss, “On spectral 
clustering: Analysis and an algorithm,” Advances in neural information 
processing systems, 2002, pp. 849-856. 
[16] Newman, Mark EJ. “Modularity and community structure in networks,” 
Proceedings of the national academy of sciences, 2006, pp. 8577-8582. 
[17] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube 
network traffic at a campus network-measurements, models, and implications,” 
Computer Networks, Vol. 53, No. 4, March 2009, pp. 501-514. 
[18] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube Traffic 
Characterization: A View from the Edge,” the ACM SIGCOMM conference on 
Internet Measurement (IMC), 2007, pp.15-28. 

 

769


