
Graph Neural Network based Root Cause Analysis
Using Multivariate Time-series KPIs for Wireless

Networks
Chia-Cheng Yen,† Wenting Sun,∗† Hakimeh Purmehdi,† Won Park,†

Kunal Rajan Deshmukh,† Nishank Thakrar,† Omar Nassef,‡ Adam Jacobs†
†Ericsson, Inc, Santa Clara, CA, USA

Email: {jerry.yen, wenting.sun, hakimeh.purmehdi, won.park,
kunal.rajan.deshmukh, nishank.thakrar, adam.jacobs}@ericsson.com
‡Department of Engineering, King’s College London, London, UK

Email: omar.nassef@kcl.ac.uk

Abstract—Due to the rapid adoption of 5G networks and the
increasing number of devices and base stations (gNBs) connected
to it, manually identifying malfunctioning machine or devices
that causes other part of the networks to fail also becomes more
challenging. Furthermore, data collected from the networks are
not always sufficient. To overcome these two issues, we proposed
a novel root cause analysis (RCA) framework that integrates
graph neural networks (GNNs) with graph structure learning
(GSL) to infer hidden dependencies from available data. The
learned dependencies are the graph structure utilized to predict
the root cause machine or devices. We found that despite the fact
that the data is often incomplete, the GSL model can infer fairly
accurate hidden dependencies from data with a large number of
nodes and generate informative graph representation for GNNs
to identify the root cause. Our experimental results showed that
higher accuracy of identifying a root cause and victim nodes can
be achieved when the number of nodes in an environment is
increased.

Index Terms—5G networks, anomaly detection, fault localiza-
tion, root cause analysis, graph neural networks

I. INTRODUCTION

5G NR significantly improves the flexibility by enabling
many sub-carrier spacing (SCS) configurations which can
support a variety of use-cases (e.g., massive IoT, MBSFN,
eMBB, and uRLLC). According to Cisco annual Internet
report [1], by 2023, the overall global mobile subscribers will
increase to 5.7 billion (over 70% of human population) and
the 5G capable mobile devices will grow to 1.4 billion (over
10% of all global mobile devices). Due to this development, it
is expected that the cost and complexity of network operations
and management will increase in the near future. To increase
fault tolerance and reduce human intervention, involving AI-
enabled root cause analysis (RCA) to automatically detect
faults, trace a chain of failures and then, identify potential is-
sues and possibly fix them automatically has become essential
for the next generation of networks.

*Corresponding Author

Well-formulated network key performance indicators (KPIs)
can be used as benchmarks by which optimal network perfor-
mance can be determined. Tracking performance against KPIs
helps telecommunication operators make proactive decisions
to ensure agreed service levels are met. KPIs also pro-
vide quantifiable measures against which fact-based decisions
around infrastructure investment, performance and demand
can be made. KPI data can also be used for RF planning,
radio channel measurements and modelling, feasibility studies
and formulation of appropriate regulatory policies for wireless
communication systems [2]. Unfortunately, there have not
been many effective approaches to explore root causes with
KPI data Moreover, we found that data managed by operators
are usually in aggregated format which provides insufficient
knowledge and leads to missing information to represent
the network thoroughly. This issue makes inferring useful
insight difficult. For example, key contributing factors such as
relationship dependencies among individual nodes are usually
missing in the data.

To address the above two challenges, we propose a graph
neural networks (GNNs) based RCA framework leveraging
KPI data and graph structure learning (GSL) model to rec-
ognize dependencies and potential root causes. In each itera-
tion, every node aggregates data from its neighboring nodes
and also propagates the representation of data aggregated to
the neighboring nodes to generate embeddings that can be
projected onto the latent space. During the training, GNNs
learn how to map nodes’ features to the latent space by fine-
tuning neural parameters. The goal is to minimize the loss
between the predicted root cause nodes and the observed
ones. The proposed algorithm using GNNs is capable of 1)
minimizing the level of human intervention by parameterizing
turnable features, 2) reducing dependency on priori knowledge
by using KPI data and node embeddings, and 3) achieving
fairly accurate prediction of what would happen to a network
by gathering more participant nodes.

Our contributions include 1) filling the gap of insufficient



study on RCA with KPI data and 2) discovering hidden
relationships missing in the datasets. We exploit KPIs com-
bined with domain knowledge to infer hidden information and
investigate the possibilities of using KPI data to successfully
identify root causes in the network for further mitigation
measures. We believe the outcomes of this work can answer
the important question of how to extract useful information
from incomplete data and lead us toward future self-learning
and self-healing networks that require minimum human inter-
vention to address the requirements from increasingly complex
networks.

The rest of this paper is organized as follows. In Section
II, we briefly introduce the concept of causal analysis, its
unique distinction from typical association relationships. We
also summarized the major trends of research in this area. In
Section III, we formulate the RCA problem as a classification
problem and apply cross-entropy as the objective function.
Section IV illustrates the proposed framework using GNN-
based approach with GSL that we have taken to solve the RCA
problem in large complex networks. The simulated experi-
mentation result is presented in Section V. We conclude with
Section VI by highlighting the contributions and providing
recommendations for future work.

II. RELATED WORK

RCA refers to the capabilities to precisely synthesizing the
status of the system for human beings to make decisions
based on carefully analyzed system behavior. The core concept
behind RCA is causality. Typical standard statistical analy-
sis attempts to infer associations among variables, estimate
beliefs or probabilities of past and future events as well as
update those probabilities in light of new evidence or new
measurements. Causality analysis, on the other hand, goes
one step further (see Fig. 1). Its aim is to infer not only
beliefs or probabilities under static conditions, but also the
dynamics of beliefs under changing conditions; for example,
changes induced by treatments or external interventions [3].
[4] subsumes and unifies the approaches to causation, and
provides a coherent mathematical foundation for the analysis
of causes and counterfactuals.

Fig. 1: Illustration of statistical inference vs. causal inference

A large amount of algorithms and techniques has been
proposed to perform RCA for decades but we will only

briefly summarize some main categories of technologies in
this section.

A. Tree-based Approaches

Decision trees are often used as a popular tool to make
machine learning decision interpretable for human, which
creates possibilities for them to be used for RCA. However,
often times, they will have to be combined with domain
knowledge/intuition or heuristics to provide some approxima-
tion towards the real root causes. Chen et al. [5] proposed
MinEntropy algorithm as a Gain function for decision trees
in their fault diagnosis system. Using heuristic techniques by
prioritizing features to explain large number of failures, instead
of building a decision forest using random selection, Singh et
al. [6] also used entropy to select better-performing nodes.
Even though tree-based techniques are useful in building
an explainable model, authors observed a trade-off between
explainability and classification accuracy, when more decision
trees were used to build decision forest, they observed some
decline in accuracy.

B. Causal Discovery

Causal discovery methods can be used to distinguish direct
from indirect dependencies and common drivers among mul-
tiple time series. Using the relationship between conditional
independence and causality in Bayesian graphs (faithfulness
assumption), Runge et al. [7] proposed the PCMCI method
to carry out causal discovery, which is referred to as the PC
method [8] adapted to time series. The strengths of PCMCI
is its high dimensionality, flexiblity in choosing different
independent tests (both linear or non-linear), and transparency
in how causal links are excluded, which occurs when in-
dependence is measured for two features given any subset
of conditions. The drawback, however, is the limitation of
markov equivalence classes. PCMCI has been later improved
to include contemporaneous links [9] and latent variables [10].

C. Probabilistic Graphical Models

Probabilistic graphical models map the conditional de-
pendency structure between random variables in terms of
probabilistic models [11]. A framework to create probabilistic
Bayesian models was proposed in [12] where it adopted
different layer types to model the manufacturing process. The
creation of the model requires expert knowledge to correctly
identify each of the nodes and layers. Dynamic Bayesian
models have been adopted in multiple works due to its ability
to capture the root causes of the manufacturing process such
as in telecommunication [13], [14], semiconductors [15] and
chemical processes [16].

Probabilistic graph models are not just limited to Bayesian
networks. In [17], directed graphic models can be used to
represent the probabilistic variables between the variables in
a system where linear regression was used for parameter
estimation and penalised least square function was used for
structure learning. On the other hand, Markov models can
also be used to represent non-directed graphs where casual



effects are not always blatant [18]. Alternatively, work in [19],
adopted a spatiotemporal graphical modeling approach util-
ising symbolic dynamics to represent the casual relationship
between nodes.

D. Graph Neural Network Models

GNNs have been a promising research topic and widely
applied to many scientific fields in recent years. Different
from CNNs that can only be applied to data with Euclidean
structures, e.g., an image consisted of pixels on regular
two-dimensional grids or a signal composed of sequential
digits in one-dimensional space, GNNs offer the flexibility
needed to process an arbitrary number of neighboring nodes
for each node and thus, have particularly impressive perfor-
mance on handling the data with non-Euclidean structures
[20] [21] [22], such as social networks, three-dimensional
images, and telecommunication networks. With the capability
of operating aggregation and propagation on irregular data
structures, GNN-based solutions can be applied to perform
RCA over a network of nodes. In this kind of problems,
collected data which are used to be features of nodes can
be properly combined with a graph used to describe possible
dependencies among nodes to generate graph-structured data.
Then, GNN models can fine-tune neural parameters to learn
the optimal embeddings that achieve node-level prediction.
Recently, GNN-based solutions to RCA over networks have
drawn much more attention. He et al. [23] proposed a GNN-
based method using alarm data to locate devices with abnormal
statuses in a telecommunication network. However, GNN
models particularly rely on dependencies (the graph structure)
and dependency information is usually missing or not provided
in collected data, which increases the difficulty of applying
GNN models.

III. PROBLEM FORMULATION

For future 5G networks (as shown in Fig. 2), a wide
variety of services will be supported. Each gNB can con-
currently serve multiple users for different applications using
dedicated data bearers. However, managing the variety of
the devices and services will be challenging. Locating the
node that is experiencing problems and causing propagated
various symptoms in a large network is extremely difficult.
This is essentially a RCA problem for the networks based on
incomplete information.

We formulate the problem of RCA as a classification
problem and concentrate on learning meaningful embeddings
from time-series KPI data to improve accuracy of locating
root causes. Let G = (V, E) denote an input graph with a set
of nodes V and an adjacent matrix E = {evu | ∀v, u ∈ V} ∈
RN×N where N is the number of nodes and evu = 1 indicates
(v, u) ∈ E ; otherwise, (v, u) /∈ E . Let F = {fv(r) | v ∈
V, r ∈ T } ∈ RD×T denote a set of D dimensional time-series
KPI data over realization T where fv(r) ∈ RD represents
the set of KPIs pertaining to the node v at realization r. An
example of a input graph is shown in Fig. 5 where gNBs
can be considered as nodes, each of which is associated with

Fig. 2: An overview of deploying an AI-enabled agent over a
5G wireless environment where gNBs provide different types
of services using dedicated data bearers for mobile users. KPI
data associated with individual gNBs are collected by the agent
to analyze/diagnose potential root causes that would lead to a
critical crisis.

multivariate time-series KPI data as features reflecting its
performance, and edges which connect any pair of two nodes
represent relationship dependencies among them. The time-
series KPI data of nodes are collected from the 5G networks
and utilized as inputs to train a RCA model to identify poten-
tial root causes that would happen in the near future. Given
an observation of nodes Xr = {fv1(r), fv2(r), · · · , fvn(r)}
at realization r, the goal is to predict a sequence of labels
Ŷr = {ŷv1

(r), ŷv2
(r), · · · , ŷvn(r)} that minimize the loss

function given by

L = − 1

N
1

T
∑
r∈T

∑
v∈V
Yr log g(X ,A) (1)

Yr is the ground truth indicating if the nodes are the potential
root causes or victim nodes or functioning nodes at the r-th
realization, A is an adjacency matrix indicating if any pair of
nodes are connected or not, and g(·) is a given GNN model.
Two GNN models, graph convolutional networks (GCNs) and
graph attention networks (GATs) are considered in this work
and we will elaborate them more in Section IV-C.

IV. THE PROPOSED FRAMEWORK

To provide useful insights into the issues and root causes
of 5G networks, an analysis of the performance data (KPIs)
associated with the individual gNBs located in an area and
for a given duration of time can be carried out to reflects
its utility. The KPIs pertaining to a gNB at a given time-
period (realization) can be represented as a feature, which
an AI-enabled agent can learn from, to predict labels that
signifies which nodes are potential root causes using deep



learning models. We propose a RCA framework consists of
four main stages: 1) Input Data representation, 2) Graph
Structure Construction, 3) Classification, and 4) Root Cause
Evaluation as shown in Fig. 3.

Fig. 3: The proposed framework for root cause analysis.

A. Input Data

Deep learning highly relies on features of input data to learn
meaningful embeddings during the entire training process. In
this work, base stations are referred to as the nodes and the
KPI data associated with nodes are the features. Each node’s
feature is represented by a vector of KPIs including reference
signal received power (RSRP), reference signal received qual-
ity (RSRQ), received signal strength indicator (RSSI), signal-
to-interference-plus-noise ratio (SINR), and throughput. RSRP
and RSRQ measure signal level and quality for modern 5G
networks, e.g., in 5G networks, user equipments (UEs) are
non-stationary and more likely to move frequently around an
area. While being served by a particular node, these UEs
measure signal strength and signal quality of neighboring
nodes and select the strongest one as the next base station for
hand-over before exceeding the service range of the current
node. RSSI reveals how well a signal from a base station
can be received by a UE. It can be an indicator to determine
whether the signal power is strong enough to build a stable
wireless connection. SINR measures quality of a wireless
connection. Throughput refers to a data rate, namely, how
many bits can be delivered to a user per second. For example,
5G is capable of delivering up to tens of Gigabits-per-second
(Gbps). These features are aggregated from time-series KPI

data in a 5G wireless environment. KPI data are collected
from our proposed simulations on which we will elaborated
more in Section V-A. To the best of our knowledge, KPI data
have not yet been considered and exploited to train models for
RCA.

B. Graph Structure Construction

The features extracted from KPI data are leveraged to
explore relationship dependencies among nodes in the same
geographical area. The graph structure learning (GSL) model
proposed by [24] is applied to a given set of nodes with
features to learn a weighted adjacency matrixA which predicts
relationship dependencies among the nodes in close proximity
to each other. The GSL model can be described as follows:

Z1 = Θ1 · Xr

Z2 = Θ2 · Xr

Z
′

1 = tanh(α · Z1)

Z
′

2 = tanh(α · Z2)

A = ReLU(tanh(α · (Z
′

1Z
′

2 − Z
′

2Z
′

1)))

(2)

where Xr is a set of nodes’ features represented by the KPIs
at realization r, Θ1 and Θ2 denote the neural parameters
for linear layers 1 and 2, respectively, and α is a control
variable for the saturation rate of the activation function. The
above model is the procedure graph_constructor at line 5
in Algorithm 1. It feeds nodes’ features into neural networks
to generate the adjacency matrix A with weights indicating
connection likelihood among nodes. From these weights, each
node only selects its top k highest connections (weights) as
its neighboring nodes to predict relationship dependencies. An
example of predicted dependencies among 7 nodes is shown
in Fig. 4. The predicted dependencies (edges) are utilized to
build an input graph as shown in Fig. 5 for data classification
in the next step. The nodes’ features combined with edge
information is the graph-structured input data upon which the
proposed GNN algorithm explores different possible causes
and analyzes them if some parts of the networks go wrong.
The constructed graph-structured input data using KPI vectors
and predicted dependencies is self-contained and informative
enough to train a RCA model.

C. Classification

We formulate a root cause identification problem as a node-
level classification problem in this work. Nodes are classified
into three groups, potential root causes (nodes that are failing
and causing other nodes to fail), victim nodes (nodes that are
failing and caused by root cause nodes) and functioning nodes
(nodes that are not affected and are performing normally),
based on their performance which is represented by a vector
of KPIs (feature). We adopt GNNs to predict root cause nodes
over 5G networks.

The proposed RCA algorithm takes the graph data obtained
from the stage 2 (Fig. 3) as inputs and employs GNNs to learn
embeddings for nodes over the input graph. Within GNNs,



Fig. 4: An example shows the predicted dependencies among
7 nodes for constructing an input graph. Weight denotes
connection likelihood among nodes and are used to select
neighboring nodes for each node.

Fig. 5: An illustration shows a input graph where yellow
circles denote gNBs (nodes), edges represent relationship
dependencies among nodes, and each bar is a vector of KPIs
(a feature) associated with an individual node.

for each iteration, a feature of each node is propagated to its
neighboring nodes to generate embeddings for all the nodes
in the graph. The features from neighboring nodes of a node
are aggregated and fed into a transformer neural network
(NN) that transforms input features into an embedding by
tunable neural weights within the NN’s hidden layers. Then,
the new embeddings generated in the current iteration will
be the features in the next iteration. The aggregation and
propagation continue until all nodes get updated by their new
embeddings. Throughout the entire training process, GNNs
fine-tune the weights that output optimal embeddings which

can be mapped onto latent space for separating the potential
root causes (sources) and the other victim nodes (symptoms).
The detailed implementation can be found in Algorithm 1.

1) Graph Convolutional Networks: Graph convolutional
networks (GCNs) [25] were proposed to handle graph-
structured data where the number of neighboring nodes for
each node is usually arbitrary. GCNs allow a flexible kernel
to process these arbitrary numbers of neighboring nodes and
aggregates features of nodes to generate embeddings. The
propagation rule is given by

g(X (l),A) = σ(D−
1
2AD− 1

2X (l)W (l))

= X (l+1)
(3)

where W (l) is the matrix of neural weights for the l-th neural
layer, σ is a non-linear activation function, ReLU , and X and
A are features of nodes and an adjacency matrix, respectively,
as mentioned in Section III.

2) Graph Attention Networks: Graph attention networks
(GATs) [26] are an advanced version of the GNN models that
incorporates the concept of attention into the GNN models and
they are defined by

g′ = σ(
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kfvi) (4)

where K is the number of independent attention mechanisms
that have been performed if multi-head is considered, Ni

is the neighboring nodes of node i, W k is the matrix of
neural weights for the k-th attention mechanism, and αk

ij

are normalized attention coefficients which are calculated by
the the k-th attention mechanism to make the coefficients
easily comparable across nodes. The attention mechanism
assigns different weighting values (coefficients) to different
neighboring nodes to express different level of importance of
one node to another node. The formula of calculating attention
coefficients is given by

eij = a(Wfvi ,Wfvj ) (5)

where a is a single-layer feedforward neural network that
maps high dimensional features into real numbers. And the
normalized form is defined by

αij =
exp(eij)∑

k∈Ni
exp(eki)

(6)

V. EXPERIMENTATION RESULTS

A. Simulation Environment

In this study, we used a scenario in which a node (a base
station) fails and this impacts the network. Tracking this event
to find the root cause of the change is the goal of our study. In
this simulation, it is assumed that a combination of 4G LTE
and 5G NR RANs are randomly distributed over an area; the
size of this area is assumed to 3Km by 3Km. This simulation
area and the distributed nodes are illustrated in Fig. 6, where



Algorithm 1 GNN-based RCA Algorithm (GNN-RCA)
Input:
Number of nodes n, size of neighboring nodes c, dimension of features
D, input features of nodes X , ground truth labels Y .
Initialize:
GCNet [25], GATNet [26], optimizer
model = GCNet() or GATNet()

1: for each episode e ∈ EP do
2: for each realization r ∈ T do
3: Xr ← {fv1 (r), fv2 (r), · · · , fvn (r)};
4: Yr ← {yv1 , yv2 , · · · , yvn};
5: A ← graph_constructor(n, c, D, Xr) [24]
6: Ei ← where(A > 0)
7: Ew ← A[nonzero(A > 0)]
8: graph = Data(Xr , Yr , Ei, Ew)
9: model.train()

10: optimizer.zero_grad()
11: output ← model(graph)
12: loss ← F.nll_loss(output[train_idx], graph.y[train_idx])
13: loss.backward()
14: optimizer.step()
15: model.eval()
16: pred = model(graph).max()
17: correct = pred[graph.test_idx].eq(graph.y[graph.test_idx]).sum())
18: accuracy = correct / graph.test_idx.sum()
19: end for
20: end for
21: return accuracy

LTE RAN also known as eNB is an integrated entity, while
each 5G RAN includes central unit (CU), distribution unit
(DU) and radio unit (RU). We assumed various types of RU
and eNB can perform together in this area: in our simulation
we assumed macro and pico transmitters, the features of each
of these RANs are listed in Table I.

Fig. 6: The simulated layout for root cause analysis

At each realization of this network configuration, 20 multi-
antenna users (UEs) are distributed randomly in the area;
each UE is equipped with 2 antennas. After association of
the UEs with the nearest RU or eNB, all the signal and

TABLE I: Characteristics of RAN Types for both 5G NR and
4G LTE

Type No. of Transmission Path Cell
Antennas Power Loss Radius

macro 6 36dBm 2 1000m
pico 4 30dBm 2 200m

interference channels are formed based on the path loss and
Reighly fading channel models. At each node, we consider
block-diagonal precoding for multi-user MIMO transmissions
and water filling algorithm to satisfy the power-constraint
transmission. Without loss of generality, we assume random
user scheduling for those nodes in which the number of
requesting UEs are more than the available resources on the
node. There are some KPIs that the simulator collects for each
UE at this stage which include reference signal received power
(RSRP), reference signal received quality (RSRQ), received
signal strength indicator (RSSI), signal-to-interference-plus-
noise ratio (SINR), and throughput.

At each realization, one of the transmitters randomly picked
up to be turned off; aka failed RU or failed eNB. Thus,
all the UEs connected to this node, should be transferred
(known as handover mechanism) to adjacent nodes where first,
the UE is under their coverage and second, the node has
available resources to allocate to this UE. If in a realization,
there is at least one UE where its original base station is
failed, and no neighboring nodes could serve them, then its
ongoing call will be stopped. The simulator raises a fail-flag
for this situation, and it is required to investigate the root
cause of this failure. Moreover, by handing over any call, the
topology of the network in terms of the signal and interference
changes which will affect the measured KPIs. Thus, after all
possible handovers are finalized, then the KPIs are updated.
We simulated this scenario for 80000 realizations and evaluate
the root cause of the failing calls within the network.

B. Performance Comparison

In our experiments, we applied GNN models to the simu-
lated dataset to identify potential root cause nodes from 80000
realizations, each of which has a different number of nodes.
To make experimental results clearly visualized, we further
split them into three datasets with different numbers of nodes,
namely, 3 sets of realizations for experimental environments
with 7, 8, and 9 nodes. In every training process, GCNs and
GATs only focused on a set of realizations with the same
number of nodes. The average training loss, average accuracy,
and training time of applying GCNs and GATs to different
environments are summarized in Table II.

The detail of how GCNs and GATs perform during training
is shown in Fig. 7 where the loss is indicated by the red line,
and the performance of GCNs and GATs are indicated by blue
line and the green line, respectively. Based on our experimental
results, we found that increasing the number of nodes in
an environment substantially improves learning performance;
otherwise, decreasing it demotes the performance. We assume
that the underlying reason for this is twofold: 1) the simulated



datasets do not provide satisfactory information for the GSL
model (Section IV-B) to infer an appropriate graph structure
which 2) later influence performance of GNN models because
the predicted graph structure is not accurate enough and
the number of features is not great enough. In contrast, an
adequate number of nodes provide plenty features for GSL to
pick up a graph structure that accurately describe relationship
dependencies over a graph. Thus, the GNN models can rely
on the accurate graph structure and perform aggregation and
propagation using these features as well as learn from more
features during training. These contributing factors (accurate
graph structure and more features) lead the models to better
performance.

Our hypothesis can be validated by the experiments. In Fig.
7a and 7d, the average accuracy of using GCNs is only 0.54
and that of using GATs is even lower, 0.45. The learning
curves for both of them are fluctuating and do not seem to be
converged. One of the reasons that lead to unstable learning
curves is because the data we obtained from the simulation
do not contain sufficient information for the GSL model to
precisely interpret hidden dependencies from them. But, since
there is no ground truth for the dependencies, this is the
optimal way to obtain relationship dependencies among nodes.
On the other hand, as we increased the number of nodes in the
environment, we observed that the learning curves gradually
became stable and converged. In Table II, higher accuracy
values can be achieved when applying GCNs and GATs to
environments with 8 and 9 nodes. Even if the predicted edge
knowledge is not accurate enough, this drawback can be
improved if more feature data from more participant nodes
can be included in the training process.

Furthermore, we observed that the performance of using
GATs is worse than using GCNs with respect to the average
training loss and average accuracy in Table II and Fig. 7.
The explanation is that the attention mechanism is operated
on predicted dependencies (edges) and it generates compar-
atively inaccurate attention coefficients which lead to poor
performance. GATs rely on attention coefficients that describe
different level of importance of one node to another node in
order to train models. Inaccurate attention coefficients directly
influence weighting values assigned to neighboring nodes of a
node. As a result, the features of some important neighboring
nodes are weighted by lower attention but the features of
other less important neighboring nodes are weighted by higher
attention.

TABLE II: Training performance of GCNs and GATs on
different numbers of nodes

Environment Model Average Average Training
Training Loss Accuracy Time

9 Nodes GCN 0.833971 0.722237 0.577800s
GAT 1.445496 0.698092 0.899881s

8 Nodes GCN 0.864629 0.635255 0.577004s
GAT 1.161185 0.611330 0.940887s

7 Nodes GCN 0.991822 0.541025 0.575542s
GAT 1.377784 0.454060 0.929919s

VI. CONCLUSION AND FUTURE WORK

As the rapid development of wireless technologies and
advanced use-cases supported by them increase, in the fore-
seeable future, our wireless networks will be inevitably filled
with an astronomical amount of devices and base stations,
which makes manual diagnosis unrealistic. Self-diagnosing
and self-healing is the only way to manage the complexity
while maintaining it with reasonable cost. RCA is the very
first step towards these goals. This work demonstrates the
feasibility of applying GNN to the RCA problem combined
with KPI data. Our proposed framework using GNN-based
approach and the GSL model achieves better performance
if more participant nodes can be included. We found that
when more information is aggregated from more participant
nodes, the GSL model is capable of generating fairly accurate
graph structure on which the GNN model can operate. That
is to say, the edge information obtained by the GSL model
can substantially assist in locating root causes and should be
included to enhance the performance of the proposed RCA
algorithm. We have also studied the difference between GCNs
and GATs and compared their performance. In the future
work, we will add a refinement process to further boost the
classification results and explore path propagation to improve
prediction accuracy of the root causes.
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