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Abstract—Distributed storage coding has been widely applied 
on data gathering over unreliable wireless sensor networks 
(WSNs), where it is essential to ensure the data persistence in 
case of several sensor failures caused by battery run-out or some 
physical damage problems surroundings. How to efficiently 
disseminate and collect the sensing data over WSNs is a key 
challenge yet. In this study, assumed that there are K sensor 
nodes equipped with sensing apparatus within N storage sensors, 
these K numbers of sensors can sense environmental changes and 
disseminate coded (by Fountain codes) time-series data over 
WSNs using the simple random walk. In order to perform the 
Fountain codes over WSNs, the question is to disseminate data in 
the long range of random walks to preserve the randomness so as 
to promote the source decoded rate. In this paper, a framework 
with partial decoding is proposed due to the temporal 
dependency of time-series sensing data. The reasons are twofold: 
(a) the complete decoding is not necessary for time-series data 
since the missing portions can be compensated by that of 
neighbors; (b) even if the ideal Luby transform (LT) code is 
optimized in terms of convergence, the complete decoding 
process is high power-consuming. Furthermore, a mathematical 
model to estimate the appropriate source decoded rate is given to   
guarantee the error tolerable level (< 4% normalized root-mean-
square error (NRMSE)). Experimental results show that the 
communication cost is affordable in the real cases. 

Keywords—WSNs; Distributed storage coding; Fountain 
codes; LT codes; Temporal dependency 

I.  INTRODUCTION 
Wireless sensor networks (WSNs) are composed of 

hundreds or even thousands of little devices (sensors) that are 
capable of wireless communication and sensing interested 
environmental information such as temperature, humidity, 
pressure, etc. WSNs can be widely deployed in different kind 
of environments. It is more feasible using mobile collectors 
collect measured data rather than send data periodically to the 
sink. The researches in WSNs usually face some challenges 
because that sensors are vulnerable to failure, unaware of 
others locations, energy-constrained with limited computation 
ability, and tiny memory, which means that they are unreliable 
and fragile and may disappear due to sensors crash. Therefore, 
the issue about data persistence in WSNs arises: how to 
acquire all the sensing data from remaining sensors despite of 
massive sensor failures. The popular solution to this problem 
is to encode data in a distributed fashion [1]-[5], [6], [7], [8]. 
Fountain codes [9], [10] are suitable for distributed storage 
coding in WSNs because of their intriguing properties: rateless 

and low complexity for both encoding and decoding 
processes. However, the challenge is how to apply Fountain 
codes in a distributed manner since they were originally 
designed for the centralized computing environment. 
Currently, the common way of disseminating data from 
multiple sensing nodes to sensor networks is random walk 
based mechanism [2]-[4]. There are two challenges should be 
addressed here. First, the dissemination cost is quite large to 
preserve the randomness so as to boost the source decoded 
rate. Second, the convergence is sluggish during the ending 
phase of Fountain codes because the receiving packet is 
unlikely to be useful, which means that almost of its neighbors 
had been decoded already. 

Inspired by previous work on distributed Fountain coding 
in WSNs, in this paper, a framework with partial decoding is 
proposed aiming to largely reduce transmission cost with 
tolerable errors to fulfill the data persistence requirement in 
WSNs. We employs two distinguished Fountain codes: LT 
codes [11] and Repairable Fountain (RF) codes [12] to 
increase reliability of data retrieval in unreliable WSNs. And 
apply the concept of partial decoding to reduce transmission 
cost. Considering that the sensing data collected in a sensor is 
in the nature of temporal dependency, we can compensate lose 
(fail to decoded) data using interpolation with accessible 
neighboring data. So, the complete decoding is not necessary 
for most of time-series sensing data. 

In this paper, we consider data propagation model as hop-
by-hop and assume there are K sensors with sensing capability 
among N sensors. Where the remaining N-K nodes cannot 
sense data but can collect and encode sensed data for the 
purpose of storage. Whenever the K sensors sense 
environmental signals at each time slot t, generate a source 
packet and disseminate it over WSNs by the simple random 
walk [13]. We observed that the length of random walk 
influence the average decoded rate while the length of random 
walk longer, the transmission cost larger. In our framework 
the source packets are disseminated with long hop count at 
intervals of t time slots and the source packets at remainder (t-
1) time slots with short hop count. Therefore we can recover 
all the data sensed at every interval of t time slots with high 
probability, and partial data (50% ~ 80%) sensed at remaining 
time slots, then we can retrieve predicted value of the other 
unrecovered sensed data using interpolation through temporal 
dependency. Furthermore, a theoretical model for analyzing 
the relationship between the average decoded rate and the 
mean square error (MSE) of compensated data through Wald’s 
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Equation [14] is provided. If the MSE of retrieved data could 
be controlled under a desired value, then we can choose the 
value of initialized hop count to achieve the corresponding 
decoded rate to reduce the transmission cost to an affordable 
level. 

The rest of this paper is organized as follows.  In Section II, 
we briefly describe LT codes and Repairable Fountain (RF) 
codes and reviews related works that increase data persistence 
of sensed data through distributed coding over WSNs. Also, 
the Castalia simulator in our WSN simulations is briefly 
described. In Section III, we introduce the proposed 
framework. In Section IV, simulation environment settings, 
network model and simulation results are presented. The 
conclusion is given finally. 

II. RELATED WORKS 

A. Fountain Codes 
The basic idea of Fountain codes [9], [10] is that receivers 

can successfully recover K original source symbols with high 
probability when they receive enough (little larger than K) 
encoded packets. Fountain codes are a class of rateless code 
which means the number of encoded packets that can be 
generated limitlessly and determined on the fly. Fountain codes 
are suitable to provide reliable data delivery application over 
unreliable channels because the encoder can send as many as 
needed encoding symbols to the receivers until they recover all 
the source symbols without any feedback. Fountain codes also 
do not need to know channel conditions while delivering 
packets. LT codes [11] proposed by Michael Luby in 2002 are 
the first realization of fountain codes. In LT codes, the decoder 
is able to recover K source symbols from any subset of 

 encoded symbols with probability 1-δ. The 
performance of LT codes is dominated by the degree 
distribution. In [11], robust Soliton distribution was given to 
ensure the expected ripple size large enough so that the ripple 
never disappears in the process of decoding with high 
probability. 

The decoding process can be divided into three phases. 
Early phase, the decoded rate is lower than 10% and raising up 
in a slow speed. Intermediate phase, the decoded rate booms up 
rapidly. Ending phase, the decoded rate is larger than 95% and 
the decoding speed slow down again. In particularly, the 
receiving packet is unlikely to be useful. This long tail effect 
will cause more overhead to complete the whole decoding 
process. 

In [12], Asteris and Dimakis introduced a new family of 
fountain codes called Repairable Fountain (RF) codes with 
systematic form, rateless, near-MDS, and locality properties.  

B. Distributed Fountain Codes 
In [2], Lin et al. proposed a decentralized fountain codes 

(EDFC) using random walk to distribute source data to a 
random subset of sensors in the network, where each sensor 
only encode the data it receive (a random walk stop at that 
node). They consider a scenario where no sink in the wireless 
sensor networks because it is not feasible that sensors 
deployed in a harsh environment transmit information to the 

sinks periodically, also the neighboring nodes of sinks may 
occur communicating congestions. They proposed a vision 
asking the sensors to collaboratively store measured data over 
a historical period of time on themselves. Then a mobile 
collector collects such historical data at a later time of 
convenience. The transmission cost of EDFC is the product of 
the length of a random walk and the number of random walks. 

A random walk corresponds to a time-reversible Markov 
chain [13]. If the length of the random walk is sufficiently 
long and the graph is ergodic, the Markov chain has a steady-
state distribution. Their work performs well as the 
(centralized) Fountain codes, however it is not practical. The 
maximum node degree is not accessible for sensors in real 
WSNs and too many packets flow into the network, which 
causes congestion. 

In [3], Aly et al. proposed a distributed storage algorithm 
(LTCDS-I), which each node disseminates one source packet 
throughout the sensor networks by simple random walks 
without trapping. Each node independently chooses one of 
neighbors uniformly at random to forward a source packet. 
The length of random walks is of order θ(nlogn). LTCDS-I 
does not maintain a probabilistic forwarding table like that in 
[2], however, it need the cover time of random walks be large 
enough to achieve the performance as (centralized) LT Codes. 
The transmission cost is extremely high when LTCDS-I is 
employed in a large-scale sensor networks. 

In [4], Vukobratovic et al. proposed a packet-centric 
approach, different from node-centric techniques. This 
approach uses encoded packets to take responsibility for 
collecting sufficient source data from different source nodes 
and performing rateless encoding, which are called rateless 
packets. Initially, each sensor sends b copies of source packet 
whose packets header attached with a coding degree, a mixing 
time counter τ=�Clogn� and ID. The dispersion process, called 
NRW, continues until the coding degree vanished. Their 
simulation results [4] demonstrated a better performance of 
NRW than Maximum-Degree [15] and Metropolis-Hasting 
algorithm [16].  

In [5], Aly et al. proposed another control folding 
mechanism for disseminating packets throughout the sensor 
network quickly, using a mixing time of the order of O(n). 
Each sensor broadcasts the received data packet to the set of 
its neighbors which have not yet received the packet. In their 
proposed scheme (DSA), each sensor is capable of sensing 
and storage and has a buffer storing multiple encoded data. 
The simulation results show it required to query only 
20%~30% of total sensors for successfully decoding all 
sensing data at the expense of large buffer size reaching to 
10% of the network size. 

In [6], Liang et al. proposed a probability broadcast 
mechanism which enables all nodes to receive the data packet 
and reduce the redundancy of data transmission. Each sensor 
has m ≥ 1 storage units. They analyzed the critical rebroadcast 
probability which depends on the network topology and the 
communication model. 
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In summary, the random walk scheme is unanimously 
approved; however the range of random walks is still of linear 
order to preserve the randomness as in the centralized version.  

C. Castalia: Simulation Tool for WSNs 
Based on the survey [17], we choose Castalia [18] as a 

simulator for our simulation tool. Castalia is a simulator for 
WSN, BAN or general networks of low-power embedded 
devices. In our simulation, we plug-in new application 
modules for the proposed distributed storage coding. 

III. THE PROPOSED FRAMEWORK 
We consider a wireless sensor network with K sensor 

nodes equipped with sensing apparatus among N nodes (N-K 
storage nodes) capable of limited computation, storage and 
wireless communication abilities. Sensor nodes are randomly 
scattered in a plane of size L×L, and unaware of each other’s 
locations. Each node has a same transmission radius r and 
adopts hop-by-hop data propagation model. That is, if a sensor 
locates within some one’s transmission range, they 
communicate with each other directly in one hop; otherwise, 
they need neighboring nodes to help forwarding packets 
wirelessly. We can formulate such a wireless sensor network 
as a random geometric graph [19] model, denoted as G(K, N, 
r). At each time slot the K sensing nodes generate one source 
packet containing Hello flag, sensing data along with its node 
ID, and an initial hop count (i.e., the length of random walks) 
and then disseminate it over networks wirelessly. Once a 
sensor receives a hello packet, extracts ID from the packet 
header and record it as neighbor. After dissemination phase, 
all sensors step into encoding phase. The complete structure of 
the proposed framework is depicted in Figure 6. 

A simple random walk on graphs forms a path that consists 
of a sequence of random and independent steps, that is, the 
next node that decides to stop by is chosen from current node 
randomly at uniform. The random walk based data 
dissemination mechanisms have several advantages such as 
simplicity, no need for global information and robustness for 
dynamic network topologies. In [4], the simulation results 
show the better performance of the simple random walk for 
data dissemination, Therefore, the proposed framework 
follows the concept to adopt the simple random walk for data 
dissemination. 

We observe that the length of random walks affects the 
average decoded rate of sensing data as shown in Figure 1. The 
random walk moves from one node to its neighboring node in a 
random manner, it may revisit some nodes frequently and may 
be trapped in a local area around the starting node. Figure 2 
shows an example. To achieve the same level of efficiency as 
the centralized LT codes do, the source data need to be 
uniformly combined (XOR) into encoded data. Hence, the 
length of random walk should be long enough so as to 
uniformly distribute of source data over the full service 
network, also to successful decode with less redundancy. 

 It is at great expense of communication cost however. Also, 
as mentioned before, the decoding process can be divided into 
three phases. Consider Figure 1 again. The ending phase begins 
around hop count of 120, here takes a long way (>200) to the 

end (100% decoded). This long tail effect will cause much 
more overhead so we suggest the framework with partial 
decoding and compensating for uncovered. 

 
Figure 1 The average decoded rate of distributed LT coding (c = 1, δ = 0.05 
and redundancy η ≤ 1.1) that disseminates source packets by simple random 
walk over a sensor network with K = 83, N = 166 and r = 10.49meter, where 
sensors deployed in a size of 100×100 meter square field. 

A. Design Concept 
We separate time-series data into two categories. For a 

given number t, the data corresponding to the numbers 
divisible by t will be almost recovered with high probability; 
however, the data corresponding to the other time slots is set 
as partially recovered. Figure 3 describes the concept of 
proposed framework and shows that the missing data can be 
interpolated by the nearby neighboring data through temporal 
dependency. 

The proposed framework employs LT codes and RF codes 
to increase the data persistence in case of massive sensor 
failures. As mentioned previously, the length of random walks 
(initial hop count) affects the data successful recovered rate. In 
Figure 4 and Figure 5, we observe that RF codes have better 
decoding performance than LT codes corresponding to short 
hop count; however the successful decoded rate of LT codes is 
as good as or even better than RF codes corresponding to 
lengthy hop count. Therefore, the proposed framework fully 
utilizes these observations, that is, the mixture of LT and RF, 
denoted as long-short dissemination plan: applying LT codes 
of long length dissemination at time slots divisible by t; 
applying RF codes of short length dissemination at remaining 
time slots. Note that, in Figures 4 and 5, the tremble of 
redundancy corresponding to the longer hop count is due to 
the characteristics of Fountain codes. Since the average 
decoded rate reaches above 0.98, the probability of recovering 
a new source symbol from an encoded data would be declined.  

 
Figure 2 An illustrated example of being trapped in a local area around the 
starting node. 
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Figure 3 An example of proposed framework with t = 7. Xji is the sensing data 
of node i at time slot j. 

B. Estimation of Source Decoded Rate 
In this section, a mathematical model for analyzing the 

relationship between the average decoded rate and the mean 
square error (MSE) of compensated data is presented. Thus, 
the appropriate source decoded rate under a desired value of 
MSE can be answered through this theoretical model, and then 
find a sufficient hop count to meet the corresponding decoded 
rate so as to reduce the communication cost eventually. Figure 
7 briefly describes the procedure. Note that the relationship 
between hop count and average decoded rate is complicated 
because of several big issues such as, network topology, 
dissemination behavior, and Fountain codes, being tangled 
together. 

The proposed framework uses simple interpolation to 
recover the missing (failed to decode) data. However, if there 
is consecutive data which is sensed in a node cannot be 
decoded; the interpolation accuracy would decline with the 
event of continuously unrecovered data. Therefore, we can see 
the aggregated amount of compensated errors as the 
summation of the prediction errors caused by a series of 
events of n loss, n = 1, 2, …, in a time span T. 

 
Figure 4 The decoding performance of distributed LT coding (c = 1, δ = 0.05 
and redundancies 1.1 ≤ η ≤ 1.2) that disseminates source packets by simple 
random walk over a sensor network with K = 83, N = 166 and r = 11, which 
sensors deployed in a size of 100×100 meter square field. 

 

Let Xn
i is ith event of compensating exactly n consecutive 

loss. Then the mean error E(X) resulted by data compensation 
can be represented as below: 

                   (1) 

Therefore we need to calculate  for n = 1, 2, … to 
get the mean error  given a source decoded rate p. We 
can calculate based on Wald’s Equation [14], since 
{ } are independent of each other. Since for lager n 
(> 5), the probability of consecutive loss is quite small so that 
we ignore these events. Let Nn be the event of exactly n 
consecutive loss. By calculation of Wald’s Equation we have:  

                            (2) 
With single analysis model, the appropriate decoded rate 
corresponding to a desired value of MSE can be solved. In 
Subsection IV.D, we shall demonstrate the practical usage for 
several real datasets. 

IV. SINULATIONS AND DISCUSSIONS 
To evaluate the performance of proposed framework, two 

schemes are presented and compared. One is the proposed 
long-short scheme; another is the solution using distributed LT 
codes only. Note that, since the solution of complete decoding 
(100% fully decoded during a time span) needs relatively high 
hop count, we ignore the comparison in the following 
discussions. Furthermore, we evaluate the accuracy of 
theoretical average decoded rate using the proposed estimation 
model. 

A. Parameter Settings 
We use the Castalia simulator to simulate the proposed 

framework implemented over a wireless sensor network G(K, 
N, r) of real data, where K = 83, N = 166. All sensors are 
randomly deployed in a 100m×100m area. The window size 
(time span T) is 20, where the parameter of long-short plan is 
seven.  

 
 

 
Figure 5 The decoding performance of distributed RF coding (c' = 2 and 
redundancies 1.12 ≤ η ≤ 1.2) that disseminates source packets by simple 
random walk over a sensor network with K = 83, N = 166 and r = 11, which 
sensors deployed in a size of 100×100 meter square field. 

The parameters of LT codes with Robust Soliton distribution 
are C = 0.1 and δ = 0.05, and the parameter of RF codes is C’ 
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= 2. The decoding and data compensation process are 
simulated by C++ code. We adopt the decoding algorithm 
proposed in [20]. 

 
Figure 6 The flowchart of the proposed framework. 

         

 
Figure 7 The basic concept for estimation. 

The real dataset is from the Lausanne Urban Canopy 
Experiment (LUCE, 
http://lcav.epfl.ch/cms/lang/en/pid/86035). We choose three 
types of sensing data: ambient temperature, surface 
temperature and relative humidity, which were measured from 
4 p.m. in 2007-05-04 to 11 a.m. in 2007-05-05 at interval of 
one hour. 

In the large-scale WSN case, where K=500, N=1000, is 
also evaluated. Unfortunately, we do not have such amount of 
real dataset of K=500, however, we generated the synthetic 
data by a random-walk-like model. The value for each data 
point can be lower than or higher than that of the previous data 
point according to the probabilities p and (1-p), respectively. 
The magnitude of increase/decrease in the value is given by a 
uniform distribution U(0, x), where x is a configurable 
parameter [21]. We let p=0.5; x=1 for temperature data set and 
x=5 for humidity data set, then generate the synthetic data 
from the data set of LUCE as mentioned. We adopt 
normalized root mean square error (NRMSE) as the error 
measurement of interpolation errors. All the results such as the 
average decoded rate, MSE, NRMSE are obtained based on an 
average of 1000 runs. 

B. Simulation Results, the Average Decoded Rate 
The comparison between the long-short scheme and the 

distributed LT scheme with the same length of random walks 
in terms of the average decoded rate is given and discussed in 
this subsection. In decoding, the mobile collector queries a 
number of random storage nodes limited by K×η. Apparently, 
the average decoded rate is proportional to the number of 

encoded data that we can collect (i.e. decoding redundancy). 
We limit the decoding redundancy to �=1.2 to save the query 
time. In our experiments, total hop count for window size 20 is 
ranging from 420 (55/15) to 1180 (195/35), where 55/15 is the 
combination of long-short, where 55 for long and 15 for short, 
totally with 55*3+15*17 = 420 hops. Also, three ranges of 
radius are considered: r = 10.49m, r = 11.01m and r = 12.12m 
corresponding to the average node degree of network graph 
5.47, 6.02, and 7.13, respectively. Because of the page 
limitation, only the case of r = 11.01m is depicted, see Figure 
8. The simulation results demonstrate that the proposed long-
short scheme has better performance than distributed LT 
scheme except for some cases with larger redundancy �=1.2. 
Note that, our proposed long-short approach still can achieve 
the decoded rate around 0.85 even with decoding redundancy 
limited to 1.1. 

C. Simulation Results, NRMSE 
The proposed approach interpolates the missing data by 

the neighboring data through the temporal dependency. Here, 
we show the performance by NRMSE. Again, the proposed 
long-short scheme has lower level of errors than distributed 
LT scheme, see, Table 1. 

D. Hop count vs. Target tolerance in NRMSE 
In this subsection, the performance of the proposed 

theoretical model of estimating the mean square error with 
three real datasets is discussed. The experiments use the 
average decoded rate in Figure 1 as inputs. Since the proposed 
model is based on Wald’s Equation, the results are the average 
of possible values. The results of theoretical model for three 
datasets, ambient temperature, surface temperature and 
relative humidity demonstrate the match up with the actual 
circumstances, see Table 1, 2 and Figure 9. Thus, this model is 
valuable for estimating the corresponding decoded rate to the 
desired error. 

V. CONCLUSION 
We proposed a framework to largely reduce the 

communication cost in this paper. With the help of exploiting 
the temporal dependency of time-series sensing data achieves 
the goal of affordable communication cost. The framework we 
suggested with partial decoding and compensation actually 
avoids the long tail effect thus largely reduce the 
communication overhead in the realization of distributed 
Fountain codes. We examine the efficiency of the proposed 
framework with two schemes in terms of the average decoded 
rate and NRMSE. Simulation results show that the proposed 
long-short scheme can reduce transmission cost in data 
dissemination phase with less amount of decoding redundancy 
while maintaining tolerable level of errors as well.  
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