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Abstract— Vehicular emissions and traffic congestion have
been deteriorated by highly urbanization. The worsen traffic
burdens drivers with a higher cost and longer time on driv-
ing, and exposures pedestrians to unhealthy emissions such
as PM , NOx, SO2 and greenhouse gases. In response to
these issues, connected autonomous vehicles (CAVs), which
enable information sharing between vehicles and infrastructure
was proposed. With CAVs and advanced wireless technologies
offering extremely low latency, platooning control can be
realized to reduce the traffic delay, fuel consumption and
emissions by improving traffic efficiency. However, conventional
platooning control algorithms require complex computations
and hence, are not a perfect candidate when applying to real-
time operations. To overcome this issue, this work focuses on
designing an innovative learning framework for platooning con-
trol capable of reducing the traffic delay and fuel consumption
by the four basic platoon manipulations, e.g., split, acceleration,
deceleration, and no-op. We integrate reinforcement learning
(RL) with neural networks (NNs) to be able to model non-
linear relationships between inputs and outputs for a complex
application. The experimental results reveal decreasing trends
of the delay and fuel usage and a growing trend of the reward.
They demonstrate that the proposed DRL platooning control
optimizes the average delay and fuel consumption by fine-tuning
speeds and sizes of platoons.

Index Terms— Deep reinforcement learning, Connected au-
tonomous vehicles (CAVs), Platooning control, Arrival timing
vector, Travel delay, Fuel optimization

I. INTRODUCTION

With excessively dense population in urban cities, traffic
congestion has been part of our daily life and impacted on
our emotion as well as the environment. Highly congested
traffic lengthen the average sojourn time for people who need
to commute everyday as well as increase the average fuel
consumption (cost) for each driver and the average volume
of noxious emissions to the environment. According to the
report by INRIX [1], the annual congestion cost for each
driver was 99 hours and $1, 377 in 2019 in the United
States (US). Greenhouse gas emissions [2] contributed by
transportation were 27% in 2020. Light-duty and Medium-
duty (including heavy-duty) vehicles accounted for 57% and
26% of transportation greenhouse gas emissions in 2020,
respectively. Undoubtedly, the ever-worsening congestion,
fuel consumption, and emission issues attract public attention
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to address energy consumption and pollutant emissions gen-
erated by transportation systems. Thereby, many solutions
with novel technologies have sprung up to address these
issues.

Connected autonomous vehicle (CAV) [3] is an ad-
vanced technology which enables vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I) communications among
drivers, road side units (RSUs) and controllers. Research on
CAV to improve mobility, safety and sustainability has been
thriving in recent years. With an environment that most of
vehicles are connected and all information is shared, pla-
tooning control can be fulfilled to improve traffic efficiency
and safety. Platooning control is a technique that organizes
a traffic flow into multiple groups, convoys, or platoons
with close-following vehicles also known as road trains in
order to increase the overall capacity of roads and reduce
fuel consumption and emissions [4] in the traffic network.
Platoons adopt cooperative adaptive cruise control (CACC)
[5] with wireless communications to manipulate platooning
formations and maneuvers. By forming vehicles into road
trains, the overall throughput can be improved because gaps
among CAVs are minimized. In addition, fuel consumption
and emissions can be reduced due to lower air drag and
speed variation for each CAV in a platoon [4]. Platooning
can be considered as a effective control strategy for heavy-
duty vehicles (HDVs) as well as a promising solution to
reduce fuel consumption in HDVs [6]–[8].

However, platooning control methods requiring compli-
cated computations are generally time-consuming and not
amenable for real-time operations. Such intensive computa-
tion problems, on the other hand, are perfect applications for
machine learning (ML). Deep reinforcement learning (DRL),
one branch of many ML techniques, is an unsupervised
learning framework that integrates reinforcement learning
(RL) [9] with neural networks. DRL can be applied to an
episodic traffic environment where a DRL agent takes pre-
defined actions based on observations, and then receives
rewards from the environment. The DRL agent learns to
determine the optimal speed and size of each platoon that
maximize the expected cumulative reward in order to reduce
the delay and fuel consumption. In this research, we propose
a DRL-based approach that selects the optimal speed and
size for each platoon to manipulate platoon maneuvers so
that each platoon can either cross the intersection as a whole
without stopping or be split into two sub-platoons that the
former sub-platoon can cross without stopping. The goal is
to minimize the number of stopping vehicles to reduce the
average delay and fuel consumption by vehicles.



The key contributions of this paper are as follows:
• We propose a DRL framework that integrates the deep

learning, dueling architecture, and experience replay
memory for platooning control to minimize the average
delay and fuel consumption by vehicles.

• We consider different arrival times of vehicles in a
platoon and adopt a vector of arrival timings of vehicles
as a state to emphasize differences among platoons.

• We apply appropriate actions to individual platoons
based on their vectors of arrival timings (states) instead
of using the same action for all platoons.

II. PROBLEM STATEMENT AND SYSTEM MODEL

A. Problem Statement

CAVs provide great controllability that can lead to lower
fuel use and traffic delay in transportation networks. Prior
work has demonstrated that properly optimized CAV pla-
toons can reduce both travel time and emissions by as much
as 40% when traveling through an isolated intersection. But
the method used to achieve this result, optimal trajectory
control, is complex and time-consuming to solve; hence, it
is not amenable for real-time operations. Such a complex
problem, on the other hand, can be a perfect application for
ML. In this research, we apply DRL-based platooning control
to address the long delay as well as high fuel consumption
and emissions by improving the traffic efficiency. To avoid
unnecessary accelerations/decelerations that result in longer
delay and higher fuel consumption, a DRL agent learns
to apply proper platoon manipulations (actions) to platoons
based on their arrival timing vectors (states).

B. System Model

We conduct experiments on a corridor where four con-
secutive intersections are signalized and traffic movements
with fixed routes, e.g., W −E and N −S are controlled by
traffic lights with fixed-time signals as shown in Fig. 1. The
assumption of a high penetration ratio of CAVs is made; thus,
information such as velocity, acceleration/deceleration, and
headway can be shared with extremely low latency by 5G
wireless technologies. Platoons with fixed routes and close-
following vehicles are generated periodically throughout an
experiment. Their platoon maneuvers are controlled by a
DRL-based platooning controller aiming at reducing the
average delay and fuel consumption. Note that the corridor is
designed to study the impact of applying platooning control
on time and fuel savings as well as examine whether the
proposed DRL-based platooning controller is capable of
cleverly splitting a platoon into two when the remaining
green time is not enough for all vehicles in a platoon to pass.
The impact of merging any two platoons is not considered
in this work.

III. THE PROPOSED DEEP REINFORCEMENT
LEARNING BASED PLATOONING CONTROL

To deal with the dynamic of traffic flow and properly
select the optimal platooning manipulations adaptive to var-
ious remaining green time that minimize the average delay

Fig. 1: An illustration shows a row of signalized intersections
where traffic flows move towards fixed routs.

and fuel consumption, we adopt an unsupervised learning
approach that is able to learn without human intervention.
DRL is an unsupervised learning framework that integrates
RL with neural networks as shown in Fig. 2. We implement
two control modules in the proposed framework: traffic light
control (TLC) and platooning control. TLC is responsible
for controlling traffic lights using fixed-time signals; for
example, 20s of green interval plus 3s of yellow change
interval for N − S and 30s of green interval plus 3s of
yellow change interval for E − W . Platooning control is
responsible for managing the speeds and sizes of the platoons
in the environment based on the selected actions by the DRL
agent. A DRL agent learns to select actions that maximize
the expected cumulative reward by trial and error manner. In
this work, we propose a DRL-based algorithm which trains a
DRL agent to determine an optimal action every 2s (a time
step) to optimize the average delay and fuel consumption.
For each time step, the DRL agent interacts with the traffic
environment where it first chooses an action (one of the four
platooning manipulations), observes some changes from the
environment (the next state), and receives a reward. Given
the observations and reward, the DRL agent computes a
difference value (i.e., loss) from the Q-network and target
network and updates the neural networks by the gradient of
the loss value.

A. State Representation

We formulate a state as a vector of arrival timings for an
individual platoon. The arrival timing vector (ATV) includes
arrival timings for all the vehicles in a platoon. An arrival
timing of a vehicle is determined by three arrival timing
variables proposed in [10]. The three arrival timing variables
are 1) cruising time-to-arrival tc, 2) earliest time-to-arrival te,
and 3) latest time-to-arrival tl. They can be calculated by



Fig. 2: The proposed DRL platooning control framework
from which The DRL agent learns to select the actions that
return the maximum expected cumulative reward. There are
two control modules in the proposed framework: traffic light
control (TLC) and platooning control. Platooning control is
responsible for managing platoons and TLC is responsible
for controlling traffic lights using fixed-time signals; for
example, 20s of green interval plus 3s of yellow change
interval for N−S and 30s of green interval plus 3s of yellow
change interval for E −W
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where d1 is the distance from the current position to the
intersection, v1 is the current speed of the vehicle, α and β
are coefficients to calculate te and tl, jerkmax is a pre-
defined constant denoting the maximum changing rate of
acceleration or deceleration, vlim is a pre-defined constant
denoting the speed restriction of the current roadway, and
vcoast is a pre-defined constant denoting the coasting speed.

For each vehicle in a platoon, its optimal arrival timing
tarr can be determined by the following rules: 1) assign tc
to be its tarr if tc is within a green interval T , 2) assign
min

{
te, tc

}
to be its tarr if the intersection of

[
te, tc

]
and

a green interval T is not empty, 3) assign min
{
tc, tl

}
to be

its tarr if the intersection of
[
tc, tl

]
and a green interval T

is not empty, and 4) assign the beginning time of the next
green interval to be its tarr if the vehicle has no choice and
must stop and wait for the next green interval. Note that the
rules are ranked by priority; that is to say, no need to move
to rule 2, 3, and 4 if rule 1 is applicable. If rule 1 is not
applicable and rule 2 is applicable, then no need to go to
rule 3, and 4 and so forth. An example of different arrival
timings assigned to vehicles in the same platoon is shown in
Fig. 3 where tne is earliest time-to-arrival for the n-th vehicle,
tnc denotes the cruising time-to-arrival for the n-th vehicle,
and tnl means latest time-to-arrival for the n-th vehicle. ATV
can be represented by

[
t1arr, t

2
arr, t

3
arr, . . . , t

n
arr

]
. ATV with

arrival timings of all the member vehicles can be meaningful
state representation that encodes information of whether a
platoon has to be split or not. For example, in Fig. 3, there
are 6 vehicles in a given platoon. To help the readers to
understand the concept of ATV, we mark the three timing
variables for the 1-st and 4-th vehicles as indicators to show
feasible trajectories. As can be observed, both t1e and t1c are
in the current green interval (51s to 80s). Based on the four
rules, instead of t1e, t1c is assigned to t1arr because there is no
need to accelerate and consume extra fuel if the vehicle can
pass an intersection at the current speed. But, with respect to
the 4-th vehicle, t4e and t4c are in the red interval and only t4l
is in the next green interval (101s to 130s). In this case, t4l
is assigned to t4arr because the vehicle needs to decelerate to
avoid a fully stop before a traffic light turns green. After
assigning timings to the rest of the vehicles, the former
three vehicles can pass the intersection within the current
green interval if they keep the current speed but the latter
three vehicles must stop and wait for the next green interval.
Hence, the ATV of the platoon has distinct arrival timings
among member vehicles and this pattern helps the DRL agent
to recognize if a platoon needs to be split to avoid fully stops
and unnecessary accelerations/decelerations. Fully stops and
unnecessary accelerations/decelerations are platooning ma-
nipulations which lead to extra delay and fuel usage. The
number of these misbehaviors has to be minimized to achieve
optimal delay and fuel consumption. The trajectories as
shown in Fig. 3 demonstrates that the whole platoon can
avoid fully stops if it can be split into two subplatoons at
t1. The former can keep the current speed and pass the
intersection at t2 while the latter can first decelerate and
then accelerate to pass the intersection later at t3 without
any stop.

B. Action Space

Recent research [11], [12] has demonstrated that RL can
be trained by using images as states and the others [13]–
[17] had formulated a matrix for an intersection by marking
0 and 1 based on coordinates of vehicles to describe a state.
In these previous papers, one characteristic they have in
common is that one state is mapped to one action. Namely,
they considered a fully observable environment as a state
and apply an action to an environment. However, in our
case, it is unrealistic to map a state to an action and then,
apply the same action to all platoons in the environment



Fig. 3: An example of different arrival timings for vehicles
in the same platoon

because their profiles such as positions, speeds and sizes
are different; thus, different actions are required for platoons
with different profiles. In response to this issue, different
actions are applied to individual platoons according to their
own states (ATVs). A large action space would impede
convergence of the learning process. Thus, we only consider
four actions, namely, 1) split, 2) acceleration, 3) deceleration,
and 4) no-op which stands for no operation. In the no-op
action, the agent will not apply any change to the platoons.
These manipulations are sufficient to accomplish all platoon
maneuvers in our simulations.

C. Reward Function

As mentioned, the goal is to minimize the number of fully
stops and unnecessary accelerations/decelerations in order
to reduce the delay and fuel consumption. In other words,
the number of moving vehicles has to be maximized. Thus,
we choose the number of moving vehicles as the reward
function. In particular, the vehicles with any speed equal
to or larger than the eco-speed (i.e., 15m/s or 34 mph) are
considered as the moving vehicles. The purpose of setting
the speed limit (15m/s) for moving vehicles is to avoid the
circumstances in which all vehicles enter and nearly stop
(1m/s) during the simulations. Moreover, the result of setting
a higher speed limit (20m/s or 45mph) is consistent with the
eco-speed one.

D. The Overall Architecture

In this section, we elaborate more on the underlying
architecture of the framework and introduce detailed deep
learning techniques utilized to train a DRL model. The DRL
architecture integrating several components that facilitate
the learning process is shown in Fig. 4. First, usually,
there is strong correlations among several consecutive states
especially in time-series data. The experience memory replay
component proposed in [18] is applied to break the strong
temporal correlations and speeds up the learning process

for the DRL agent. The second component included in the
architecture is the two separated neural networks, Q-network
and target network [19]. In DRL, neural networks are applied
as non-linear approximation function to map a state to an
action that returns the maximum Q-value. Q-network and
target network share exactly the same number of neurons and
architecture. The set of neural parameters θ is copied over to
the target network every τ steps. The current state and action
are first fed into the Q-network for approximating a Q-value.
Previous experiences sampled from the replay memory buffer
are inputs to the target network for approximating a target Q-
value. The loss value, L, calculated by the Q-value and target
Q-value will be partially differentiated to get the gradient in
which the agent will have a sense and know how to update
the Q-network by backwardpropagation to fine-tune the set of
neural parameters θ. The dueling architecture [20] is the third
component that helps the selection of action by separating
the estimations of state-value and action advantage. Instead
of using one single sequence for value estimations, a Q-
network with two separated sequences is implemented, one
for value (blue cycle) and the other for action advantage
(brown cycles). We include this component because in some
states, it matters which action needs to be taken, but most
states, the selection of action has no influence on what
happens. Hence, we separate the estimations of state-value
and action advantage in order to learn which state-values are
higher without going through and learn every single state-
action pair.

IV. RESULTS AND DISCUSSIONS

In this section, we will elaborate on the hyperparameters
in DRL framework and experimental results regarding the
learning performance of the DRL agent, average delay and
average fuel consumption.

A. Hyperparameters

As shown in Table I, a set of hyperparameters used in
the proposed DRL framework is pre-defined. Traffic arrival
ratio for each intersection is 900 vehicles/hour/lane. The
ϵ-greedy function determines the probability of doing ex-
ploration or exploitation where ϵi as the initializing value
is 1.0, ϵf = 0.01 is the finalizing value, and the decay
ratio is 300. Learning ratio α determines the weight of
newly learned knowledge. α approaching 0 makes the agent
exploit prior knowledge instead of learning something new
while α approaching 1 makes it explore new potential rather
than using prior knowledge. α is set to 0.0001 in the
simulations. Discount factor γ determines the importance
of future rewards. γ closer to 0 makes the agent behave
myopically by only considering immediate rewards while γ
closer to 1 makes it seek a long-term outcome by weighting
future rewards with a higher value. γ is set to 0.99 in
the simulations. The replay memory size M used to store
previous experiences is set to 30000, and mini-batch size B
used to sample experiences from the memory is set to 1024.
The number of training episode E = 700 is selected by trial
and error.



Fig. 4: An overview of the DRL architecture for training a platooning control agent.

TABLE I: Summary of hyperparameters in the proposed DRL framework

Parameter Description
Traffic arrival ratio: 900 v/h/l
ϵ-greedy decay function: calculate the probability of exploration
ϵf + (ϵi − ϵf )× e−

episode
decay ratio and exploitation where decay ratio is 300

Initializing ϵi = 1.0 the beginning value of ϵ
Finalizing ϵf = 0.01 the final value of ϵ
Learning ratio α = 0.0001 learning ratio for updating the neural network
Discount ratio γ = 0.99 discount for future rewards
Memory size M = 30000 the size of entire replay memory buffer
Mini-batch size B = 1024 the size of samples that will be reused
Maximum number of episodes E = 700 the total number of training episodes

B. Learning Performance

We discuss the impact of platooning control on the average
fuel consumption by each vehicle and the average delay of
each vehicle. In the simulations, the agent is allowed to
explore more than exploiting at a pre-training stage. The pre-
training stage is set to go off in 100 episodes. During the pre-
training stage, the agent randomly selects an action instead
of using the optimal one in order to discover potential actions
that would return a better reward. In Fig. 5, the trend of the
reward shows that the DRL platooning agent keeps obtaining
better rewards after the pre-training stage. Namely, it had
learned how to either split platoons or control the cruise

speeds of the platoons to reduce fuel usage by vehicles during
the previous stage (pre-training) and applies the knowledge
to manipulate platoons in the current stage (training). As
more and more training episodes had been learned (close to
the 700-th episode), the agent learns to maximize rewards
by controlling platoons to achieve lower fuel consumption.

On the other hand, as shown in Fig 6, the average delay
reveals a decreasing trend when the reward gets higher. In the
simulation, we observe two reasons to explain the decreasing
trend. First, we observe that the average delay decreases
because the speeds of the platoons can be manipulated to
avoid stopping in front of an intersection. A platoon is able



Fig. 5: The episode reward and average fuel consumption by
vehicles.

to pass an intersection through acceleration before the end
of a green interval if earliest time-to-arrivals for all the
vehicles in the platoon can be in the same green interval.
Hence, acceleration that helps to reduce the delay could be
one contributing factor to the decreasing trend of the delay.
Second, platoons which can not pass an intersection as a
whole could be split into two where the first half of the
platoons keep the same speed and pass but the second half
of them have to fully stop and wait; thus, the first half of
them could be the other contributing factor.

Fig. 6: The episode reward and average delay by vehicles.

V. CONCLUSION

With the extremely low latency guaranteed by 5G NR,
information sharing among CAVs within a few milliseconds
becomes possible, which facilitates research on platooning
control to move further. Previous work has demonstrated
feasibility of improving latency and fuel usage by optimiz-
ing platooning control but tremendous mathematical efforts
are required to complete the computation and hence, the
computation complexity is high and cannot be applicable to
real-world applications. In this work, we have demonstrated
that the reduction of the delay and fuel usage is feasible by
using DRL. The DRL agent learns how to deal with highly

changeable traffic flow and select the optimal action (e.g.,
change the current speed or re-size a platoon) to minimize
the delay and fuel consumption. The trends of the reward,
average delay, and average fuel consumption show promising
results if DRL-based platooning control can be applied.
In our future work, we plan to conduct more complicated
scenarios such as considering multi-models traffic and a
larger traffic network.
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