
A Deep On-Policy Learning Agent for Traffic Signal Control of
Multiple Intersections

Chia-Cheng Yen1, Dipak Ghosal1, Michael Zhang2, and Chen-Nee Chuah3

Abstract— Reinforcement Learning (RL) is being rapidly
adopted in many complex environments due to its ability to
leverage neural networks to learn good strategies. In traffic
signal control (TSC), existing work has focused on off-policy
learning (Q-learning) with neural networks. There is limited
study on on-policy learning (SARSA) with neural networks.
In this work, we propose a deep dueling on-policy learning
method (2DSARSA) for coordinated TSC for a network of
intersections that maximizes the network throughput and min-
imizes the average end-to-end delay. To describe the states of
the environment, we propose traffic flow maps (TFMs) that
capture head-of-the-line (HOL) sojourn times for traffic lanes
and HOL differences for adjacent intersections. We introduce
a reward function defined by the power metric which is the
ratio of the network throughput to the average end-to-end
delay. The proposed reward function simultaneously maximizes
the network throughput and minimizes the average end-to-end
delay. We show that the proposed 2DSARSA architecture has
a significantly better learning performance compared to other
RL architectures including Deep Q-Network (DQN) and Deep
SARSA (DSARSA).

Index Terms— Deep reinforcement learning, Traffic signal
control, Multi-intersection control, On-policy learning, Traffic
flow maps, Power metric

I. INTRODUCTION

Due to the mobility needs of the increasing population [1],
new understanding of the health impacts of traffic related
emissions [2], and the technological developments in con-
nected and autonomous vehicles (CAVs), there is significant
new research in traffic signal control (TSC). Besides im-
proving safety, there are new opportunities and challenges
to improve scheduling algorithms in TSC to increase the
network throughput and lower average end-to-end delay.
Towards this end, there is increasing trend in applying
Reinforcement Learning (RL) [3] algorithms. A detailed
survey on applying RL algorithms to TSC is summarized
in [4]. As such, conventional RL algorithms have been shown
to perform well for simple traffic environments with static
traffic demands and regular traffic patterns [5]–[8]. How-
ever, for complex traffic environments including coordinated
control of a network of intersections, the state space grows
exponentially with the number of intersections. A large state
space degrades the learning performance of a conventional

1Chia-Cheng Yen and Dipak Ghosal are with the Department of
Computer Science, University of California, Davis, CA 95616, USA
ccyen@ucdavis.edu, dghosal@ucdavis.edu

2Michael Zhang is with the Department of Civil and Environ-
mental Engineering, University of California, Davis, CA 95616, USA
hmzhang@ucdavis.edu

3Chen-Nee Chuah is with the Department of Electrical and Com-
puter Engineering, University of California, Davis, CA 95616, USA
chuah@ucdavis.edu

RL agent as it may fail to explore all the state-action pairs
within a reasonable time. This problem is referred to as the
curse of dimensionality [9].

The function approximation [10]–[12] using a neural net-
work is a promising solution to the large state space problem.
In this approach, Q-values are approximated by deep neural
networks such as convolutional neural network (CNN). The
methods usually require a significant number of training
episodes to train a model because the action selection is
learned by several layers of the neural network rather than
updating values in a table. The deep neural network must be
run through many episodes in order to fine-tune the weights
through back propagation. Moreover, the convergence of the
weights is not guaranteed if neural networks with non-linear
activation functions are used.

In this work, we design a centralized TSC controller
with a deep RL agent (DRL-agent) that is trained by a
novel deep dueling on-policy learning method referred to
as 2DSARSA. To the best of our knowledge, this is the
first work applying 2DSARSA for a coordinated control of
a network of intersections. While many studies have shown
good prospects on DQN, our results show that DQNs do
not converge quickly and do not yield optimal results. The
proposed 2DSARSA performs better and converges faster
than DQN.

The key contributions of this paper are as follows:

• We propose a deep dueling SARSA based RL-agent
referred to as 2DSARSA, which combines the on-policy
temporal-difference (TD) learning, deep learning, du-
eling architecture [13], and experience replay memory
[14].

• We propose traffic flow maps (TFMs) as states to
capture flow dynamics of a network of intersection.
Using the CNN, the 2DSARSA agent is able to learn
traffic features from the proposed TFMs.

• We introduce a reward function using the power metric,
which maximizes the network throughput and mini-
mizes the average end-to-end delay of a network. Our
experiments show that this power metric enhance the
learning performance of the proposed on-policy method.

• We compare our method with deep Q-Network (DQN)
[14], double deep dueling Q-Network (3DQN) [15], and
DSARSA [16] in terms of their learning performance.

There is insufficient study on the comparison between deep
on-policy (DSARSA) and deep off-policy (DQN) in the
context of TSC. This paper is a first step towards addressing
this gap for TSC researchers.



II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a 3 by 3 grid network of 9 intersections. At
each intersection there are two traffic signal phases - one for
North-South and the other for East-West. There is a single
lane in each direction - one lane for North-to-South and
one for South-to-North. For each intersection, the decision
of which traffic signal phase to activate is given by the
centralized controller based on the DRL-agent shown in Fig.
1.

Fig. 1: A 3 by 3 grid traffic network consisting of 9
intersections. At each intersection there are only two possible
movements - North-South and East-West. The DRL-agent
in the centralized controller determines the selection of the
phase for each intersection for every time slot.

The goal of DRL-agent is to schedule non-conflict traffic
movements for the network so as to maximizes the network
throughput and minimizes the average end-to-end delay. All
the TSCs are synchronized and operate per time slot of
duration t. At beginning of every time slot t, the DRL-
agent receives the state of network denoted by st which
is described by the Traffic Flow Map (TFM). Based on
the state st, the DRL-agent takes an action at which is an
assignment of traffic signal phases to each intersection. Since
we consider only two movements at each each intersection,
action at is a bit vector of length 9 as shown in Figure 1.
For each interval, the DRL-agent receives a reward rt which
indicates how well the action at in state st impacts the the
network throughput and/or average end-to-end delay. This
is determined by the reward function that is discussed in
Section II-C.

A. State Space

We propose to describe the state using a traffic flow map
(TFM) which is an image encoding the Head-of-Line (HOL)
sojourn times of each lane at each intersection and HOL
sojourn times differences between adjacent intersections.
Previous studies [10]–[12], [15], [17] have used queue length
of vehicles at the intersection to describe the state. However,
studies [18], [19], show that delay-based backpressure (BP)
scheduling algorithm achieves better fairness than using
queue lengths (queue-based).

Let Wi,k(t) denote the HOL sojourn time of lane i at
intersection k at time slot t in the traffic network. Employing
the methods proposed in [20], we define two metrics for
lane i at intersection k - the delay metric Ŵi,k and delay
difference metric ∆Ŵi,k as follows:

ˆWi,k(t) = Wi,k(t)−Wi,k−1(t) (1)

∆ ˆWi,k(t) = ˆWi,k(t)− ˆWi,k+1(t) (2)

where k−1 and k+1 denote the neighbouring upstream and
downstream intersections, respectively. If an intersection has
no neighbors (the edge intersections in our grid network), the
HOL sojourn time values are set to 0. These delay metrics
guarantee a linear relationship between queue lengths and
delays for a traffic network with multiple intersections. Note
that similar to the delay metrics one can define queue metrics
based on the differences in the queue lengths between the
adjacent intersections.

The traffic flow information of each intersection in terms
of the delays and the delay metrics is stored in a 5×5 matrix
as shown in Fig. 2. Note that for each movement there is
one lane in each direction. Consequently, there are 4 HOL
sojourn times. These are denoted by the orange circles in Fig.
2. The values of these circles will be the corresponding HOL
sojourn time values. The blue circle in the center indicates
the average HOL value of 4 HOL sojourn times. The red
and brown circles represent delay metrics defined in Eq.1
and Eq.2 with corresponding neighbouring intersection. Note

Fig. 2: The traffic state information of one intersection
encoding HOL sojourn times Wi,k(t), delay metrics ˆWi,k(t)

and delay difference metrics ∆ ˆWi,k(t).

value of each circle is a real number that can be mapped to
a color scale in which high values are in red and low values
are in yellow.

The TFM of the entire network is created by laying out
the traffic state information of each intersection in a two
dimensional grid while maintaining the adjacency of the
intersections. The TFM for the 3×3 grid network (consisting
of 9 intersections) is shown Fig. 3. The figure shows the
TFM at time slot 455, 1155, and 1755, respectively. Note
each TFM consists of 9 tiles each of which is a 5×5 matrix
of data values shown in Fig. 2. These TFMs encode the delay
information (the HOL sojourn times and the delay metrics)
of the traffic flow in the network as it evolves over time. For



the example shown in Fig. 3, the colours shows that traffic
congestion has become worse over time.

B. Action Space

At each time slot t, each intersection can activate a traffic
flow from either North-South or East-West directions. The
action at is a bit vector, i.e., at = {0, 1}M where M is
the number of intersections and 0, 1 denotes which direction
should be activated, 0 for East-West direction, 1 for the
North-South direction.

C. Reward Function

The reward function should be carefully designed because
temporal-difference (TD) methods update the Q-values for
state-action pairs based on the estimate of reward. On-policy
learning estimates rewards for state-action pairs by assuming
that the same policy will be followed. In contrast, off-
policy learning estimates rewards by selecting actions which
maximize the expected cumulative reward. We found that on-
policy learning is sensitive to reward functions. Compared
to off-policy learning, on-policy learning which follows the
initial policy is unable to explore other policies. Hence,
the evaluation of the initial policy which continues to be
followed is crucial to on-policy learning.

In this work we consider three different reward functions.
1) Throughput based reward: In this case high reward

is given to state-action pairs that have high network
throughput, denoted by λ.

2) Average end-to-end delay based reward: In this
approach higher reward is assigned to state-action pairs
that have lower average end-to-end delay denoted by
d.

3) Power based reward: We define the power metric P
as

P =
λ

d
(3)

This reward function assigns higher reward to state-
action pairs that have high P value. Note that maxi-
mizing P implies that the network throughput is max-
imized and the average end-to-end delay is minimized.
The power metric has been used to design protocols in
computer networks including [21]. Operating a packet
switched network that maximizes power is referred to
as Klienrock’s optimal operating point as it achieves
the maximum network throughput at the minimum
end-to-end delay.

Both the network throughput and average end-to-end delay
are calculated based on the vehicles which have exited the
network during the current time slot. For larger networks it
may be more appropriate to calculate the network throughput
and the average end-to-end delay over a number of time
slots to account for the nominal delay of vehicles going
through the network which would result in a delay between
the action and response (hence the reward) from the envi-
ronment. In Section IV, we show that power based reward
function achieves better performance and has better learning

performance than using the only throughput or average end-
to-end delay based reward.

III. DEEP DUELING SARSA (2DSARSA) FOR
MULTIPLE INTERSECTIONS

The proposed 2DSARSA adopts SARSA (on-policy algo-
rithm) [22], dueling architecture [13], deep neural networks
(CNNs), and experience memory replay [14]. The advantages
of the above techniques can be summarized as follows.
First, our preliminary experiments reveal that SARSA has
better performance than Q-learning [23]. Second, dueling
architecture helps the selection of action by separating the
estimations of state-value and action advantage. It benefits
the 2DSARSA agent if the action space is large. Finally, the
experience memory replay breaks the strong temporal corre-
lations and speeds up the training process. In the following
subsections we outline the key aspects of the implementation.

A. Learning based on Deep SARSA

Deep SARSA refers to the on-policy TD learning algo-
rithm using a deep neural network as a function approxima-
tor. Similar to [14], a parameterized neural network replaces
the conventional tabular approach for storing the Q-values for
state-action pairs. The inputs to the Q-network are TFMs, the
outputs are actions with the optimal Q-value over all state-
action pairs, and θ is a set of network parameters. During
the training stage, the loss function is defined by

L(θt) = (yDSARSAt −Qπ(st, at; θt))
2 (4)

yDSARSAt = rt + γQπ(st+1, at+1; θ−t ) (5)

where st is the current state, at is the current action, st+1

is the next state which is dependent on at, at+1 is the next
action selected by ε-greedy, and yDSARSAt is the TD target
given by Eq. 5. The goal of the 2DSARSA agent is to update
θ that optimizes the loss function L(θt). First, the partial
derivative of L(θt) is calculated by differentiating Eq. 4. The
gradient of the loss function can be obtained by

5θt L(θt) = (yDSARSAt −Qπ(st, at; θt))5θt Qπ(st, at; θt)
(6)

where 5θtQπ(st, at; θt) denotes the gradient of the current
state-action value. We optimize the loss function L(θt) by
Eq. 6 and the network parameter set θ is updated by using
stochastic gradient descent (SGD).

The action space considered in this work has a cardinality
of 2M which degrades the learning performance of the
2DSARSA agent. We apply dueling network architecture to
solve the large action space issue because the agent, which
is trained by dueling network architecture, performs well in
a large action space. The overall architecture of the proposed
2DSARSA uses two separate neural networks [14] (Q-
network and target network), dueling network architecture
[13], and experience memory replay [14]. Given the on-
policy TD learning algorithm, in each time slot, the current
TFM as the current state is fed to the Q-network, previous
experiences are fed to the target network, and at the same
time the current experience (st, at, rt, st+1, at+1) is pushed



(a) t = 455 (b) t = 1155 (c) t = 1755

Fig. 3: TFM for the 3× 3 grid network of 9 intersections as it evolves over time. Note each TFM consists of 9 tiles each
of which is a 5× 5 matrix of data values shown in Fig. 2.

into the experience replay memory which stores the latest M
experiences. Experience replay breaks the highly temporal
correlation between consecutive samples to increase learning
efficiency. Based on mini-batch size B, batches are randomly
sampled from the replay memory. The 2DSARSA agent
learns through mini-batches that increases the efficiency of
the training as opposed to learning over full observations.

IV. RESULTS AND DISCUSSIONS

For training, we generated 1-hour of traffic arrivals fol-
lowing the Poisson process. We trained the agents based on
different DRL algorithms (DSARSA, 2DSARSA, DQN, and
3DQN summarized in Table II). The agents were trained
using 1000 episodes; they were pre-trained with the first 100
episodes to accumulate replay data. Each agent took 24 to
27 hours to complete 1000 episodes. For the test stage, 10-
hours traffic arrivals were used to verify the robustness of
the agent. The reward, average end-to-end delay, and average
queue length were used to evaluate the learning performance
of the agents. The hyper-parameters are shown in Table I.

TABLE I: Summary of hyper-parameters and their corre-
sponding values.

Hyperparameters
Traffic demand ~D = [0.2, 0.5, 0.2, 1]× 0.125× 1.5 v/s/l
Time slot t = 5 sec

ε-greedy decay function εf + (εi − εf )× e−
episode

300

Initializing ε εi = 1.0
Finalizing ε εf = 0.01
Learning ratio α = 0.0001
Discount ratio γ = 0.99
Memory size M = 30000
Mini-batch size B = 1024
Episodes E = 1000

A. Learning Performance of The Proposed 2DSARSA Agent
using Different Reward Functions

Fig. 4 shows the reward and average end-to-end delay
during the training stage for 2DSARSA with different reward
functions. We first explain why there are spikes around the
100-th training episode. Note that we choose to pre-train with
the first 100 episodes to accumulate tuples of the previous
state, previous action, reward, current state, and current

action (a.k.a experiences) for the replay memory. Initially, the
number of experiences which can be sampled is insufficient
for the agent to accurately compute the loss between the
target Q-value and the current Q-value and update the neural
network. For the first 100 episodes, the 2DSARSA agent
randomly selects actions for exploration while accumulating
replay data.

The results in Fig. 4a show that the reward quickly
increased after the 100-th episode and continued to increase
with the number of episodes. The average end-to-end delay
decreased quickly after pre-training, and converged to a
stable value around the 300-th episode. In contrast, DSARSA
required 1000 episodes to converge to the same performance
level as 2DSARSA (not shown here due to space limitations).
Overall, the curves of the reward and average end-to-end
delay converged eventually. The 2DSARSA agent with the
on-policy learning algorithm is indeed capable of learning
from high dimensional states and performing well in large
action space. Furthermore, dueling architecture stabilizes and
speeds up the training process.

Compared to Fig. 4a, Fig. 4b and 4c show the results
of using throughput-based reward and average end-to-end
delay based reward. Note that these reward functions have
different scales. For these functions, the reward and average
end-to-end delay were unstable and did not converge to the
same performance level as the power based reward function.
Unlike the power metric which maximizes the network
throughput and minimizes the average end-to-end delay, they
consider only one factor when updating Q-values, i.e., either
the throughout or delay. In many Atari games which have
comparatively simpler environments, agents are aware of
how they perform by only one measurement, which is the
score. However, such a one-factor based measurement to
describe part of the agent’s performance is not suitable for a
complex environment such as coordinated control of multiple
intersection. These results demonstrate that the robustness of
the power based reward function.

B. Performance of the Proposed 2DSARSA Agent in 10-hour
Traffic Arrival Data

Once the training was completed, the models of the neural
networks were stored and tested for 10-hour traffic arrival
data. The performance of BP scheduling schemes (QBPC and



(a) Power based reward function (b) Average end-to-end delay based reward
function

(c) Throughput based reward function

Fig. 4: The reward and average end-to-end delay during the training stage by the proposed 2DSARSA with different reward
functions.

Fig. 5: Performance comparison on the delay with baseline
algorithms: queue-based BP control (QBPC) and delay-based
BP control (DBPC). 10-hour traffic arrival data is used as the
test data. 2DSARSA was trained by using the power based
reward function.

DBPC) as the baseline is compared to our proposed method
in Fig. 5. BP-based schemes determine a traffic signal phase
based on the highest traffic pressure (maximum queue length)
in TSC problems [18], [19], [24]. In each intersection, a BP-
based controller independently determined the phase without
considering any additional information from its neighbors.

Fig. 5 shows that the outliers (vehicles) which could
encounter with a longer sojourn time. In QBPC and DBPC,
the sojourn time which outliers encounter are close to 500
sec. With heterogeneous arrivals, DBPC has a shorter so-
journ time which vehicles could encounter, and it achieves
a better fairness than QBPC [18], [20]. On the contrary,
the performance of the 2DSARSA agent achieves a even
shorter sojourn time for outliers and a better fairness for all
vehicles than DBPC. It is quite obvious that the 2DSARSA
outperforms the conventional BP-based algorithm proposed
in [18], [20] for multiple intersections after 1000 training
episodes. Regarding the overall fairness, less outliers (vehi-
cles) would experience a end-to-end delay of more than 400
sec compared to QBPC, DBPC, and other DRL-agents (not

shown here due to space limitations).

C. Learning Performance of Different DRL-Agents

TABLE II: Properties of different DRL-agents compared in
this study.

Methods TD Learning Neural Network Architecture
DQN [14] Q-learning CNN Single
3DQN [15] Q-learning CNN Dueling
DSARSA [16] SARSA CNN Single
2DSARSA SARSA CNN Dueling

Fig. 6: Learning performance of DQN [14], 3DQN [15],
DSARSA [16], and 2DSARSA. The power based reward
function was applied to all agents.

We implemented different DRL-based methods shown
in Table II for comparison. The learning performance of
DQN and 3DQN show that Q-learning with deep learning
and advanced architectures is not appropriate for the traffic
network environment. The fundamental difference between
on-policy and off-policy methods is that off-policy learns by
searching the best action from several policies. DQN and
3DQN utilize an off-policy learning method, which switches
among multiple policies to maximize the expected accumu-
lated reward. In many Atari games that apply Q-learning, this
approach easily eliminates a poor initial policy and jumps to
a promising one, which returns a better accumulated reward.
However, as the state and action space grow exponentially



for complex environments, this approach has limitations.
Fig. 6 shows learning performance of different agents in
terms of the reward (based on the power metric). DQN
and 3DQN agents were not able to learn effectively from
the environment and had convergence issues. The reward,
average end-to-end delay and average queue length had high
fluctuations towards the end of the training (not shown due
to space limitations).

On the other hand, DSARSA and 2DSARSA were capable
of learning effectively from the environment as shown in
Fig. 6. Without greedily searching the best policy, DSARSA
learns by following the initial policy and selecting the next
action based on this policy. These algorithms performed
significantly well during the training stage and both of their
training processes converged at the end. On-policy learning
with deep learning shows a certain level of stability while
learning from a complicated environment. Because on-policy
learns by following the same policy while training, the
reward converges even if the policy chosen by SARSA is
initially not good enough. The dueling technique, which
separates the state-value and action advantage, can effectively
filter out useless actions and force the entire training to
converge eventually. 2DSARSA using dueling architecture
significantly reduced oscillation, and converged faster during
the training stage.

In summary, 2DSARSA combining dueling architecture
and DSARSA, outperforms other methods and agents. Based
on our experiments, purely applying BP-based algorithms to
a traffic network does not achieve global optimality. Further
optimization could still be achieved. Learning by following
the same policy provides a good entry point to explore better
performance when doing scheduling in a traffic network.

V. CONCLUSION

Previous studies mainly focused on applying off-policy
methods with deep learning to the traffic control problem.
Off-policy methods generally work well in a simple en-
vironment such as an isolated intersection. However, they
do not work well in complicated environments like a grid
network. The proposed 2DSARSA is a deep dueling on-
policy method using TFMs as inputs and applying power
metric as the reward function. It performs well in a more
complex environment than a single intersection. Our results
have shown a promising prospect of using 2DSARSA for
multi-intersection traffic light control. A 2DSARSA based
centralized controller learning by TFMs and the power based
reward is able to achieve better fairness than BP-based
algorithms and other DRL-based agents.

For our future work, we will consider larger real traffic
networks with more traffic phases at each intersection. As the
power metric only considers performance (network through-
put and average end-to-end delay) we will study how fairness
can be incorporated into the reward function. For larger
networks we will investigate a multi-level control which is
more suitable for the estimation and action selection than the
dueling architecture.

REFERENCES

[1] “UN estimates: 68% of the world population projected to live in
urban areas by 2050,” https://www.un.org/development/desa/en/news/
population/2018-revision-of-world-urbanization-prospects.html, 16
May 2018.

[2] “Fast facts: U.s. transportation sector greenhouse gas
emissions 1990-2017,” https://www.epa.gov/greenvehicles/
fast-facts-transportation-greenhouse-gas-emissions.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An Introduction,
2nd edition. MIT press, Oct. 2018.

[4] A. Haydari and Y. Yilmaz, “Deep reinforcement learning for intelligent
transportation systems: A survey,” May 2020, arXiv:2005.00935.

[5] T. L. Thorpe and C. W. Anderson, “Traffic light control using sarsa
with three state representations,” no. Technical Report, 1996.

[6] M. Abdoos, N. Mozayani, and A. Bazzan, “Traffic light control in non-
stationary environments based on multi agent q-learning,” in Proc.
IEEE 14th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 5-7 Oct. 2011, pp. 1580–1585.

[7] S. Araghi, A. Khosravi, M. Johnstone, and D. Creighton, “Q-learning
method for controlling traffic signal phase time in a single inter-
section,” in Proc. IEEE 16th International Conference on Intelligent
Transportation Systems (ITSC). IEEE, 6-9 Oct. 2013, pp. 1261–1265.

[8] J. Jin and X. Ma, “Adaptive group-based signal control by reinforce-
ment learning,” Transportaion Research Procedia, vol. 10, pp. 207—
-216, 2015.

[9] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent rein-
forcement learning for integrated network of adaptive traffic signal
controllers (marlin-atsc): Methodology and large-scale application on
downtown toronto,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 3, pp. 1140–1150, Sept. 2013.

[10] W. Genders and S. Razavi, “Using a deep reinforcement learning agent
for traffic signal control,” Nov. 2016, arXiv:1611.01142.

[11] E. van der Pol and F. A. Oliehoek, “Coordinated Deep Reinforcement
Learners for Traffic Light Control,” in NIPS Workshop on Learning,
Inference and Control of Multi-Agent Systems, 2016.

[12] J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, “Adaptive traffic signal
control: Deep reinforcement learning algorithm with experience replay
and target network,” May 2017, arXiv:1705.02755.

[13] Z. Wang, T. Schaul, M. Hessel, H. V. Hasselt, M. Lanctot, and
N. D. Freitas, “Dueling network architectures for deep reinforcement
learning,” Apr. 2016, arXiv:1511.06581.

[14] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, p. 529, Feb. 2015.

[15] X. Liang, X. Du, G. Wang, and Z. Han, “A deep reinforcement learning
network for traffic light cycle control,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 2, pp. 1243–1253, Feb. 2019.

[16] D. Zhao, H. Wang, K. Shao, and Y. Zhu, “Deep reinforcement learning
with experience replay based on sarsa,” in IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 6-9 Dec. 2016.

[17] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proc. the 24th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2018, pp. 2496–2505.

[18] J. Wu, D. Ghosal, M. Zhang, and C.-N. Chuah, “Delay-based traffic
signal control for throughput optimality and fairness at an isolated
intersection,” IEEE Trans. on Vehicular Technology, vol. 67, no. 2,
pp. 896–909, Feb. 2018.

[19] C.-C. Yen, D. Ghosal, M. Zhang, C.-N. Chuah, and H. Chen, “Falsified
data attack on backpressure-based traffic signal control algorithms,” in
IEEE Vehicular Networking Conference (VNC). IEEE, 5-7 Dec. 2018,
pp. 588–595.

[20] B. Ji, C. Joo, and N. B. Shroff, “Delay-based back-pressure scheduling
in multihop wireless networks,” IEEE/ACM Trans. Netw., vol. 21,
no. 5, pp. 1539–1552, Oct. 2013.

[21] L. Kleinrock, “Internet congestion control using the power metric:
Keep the pipe just full, but no fuller,” Ad Hoc Netw., vol. 80, pp.
142–157, 2018.

[22] G. A. Rummery and M. Niranjan, “On-line q-learning using connec-
tionist systems,” vol. 37, 1994.

[23] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[24] T. Wongpiromsarn, T. Uthaicharoenpong, Y. Wang, E. Frazzoli, and
D. Wang, “Distributed traffic signal control for maximum network
throughput,” in Proc. 15th Int. IEEE Conf. Intell. Transp. Syst. IEEE,
16-19 Sept. 2012, pp. 588–595.

https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions
https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions

	INTRODUCTION
	SYSTEM MODEL AND PROBLEM STATEMENT
	State Space
	Action Space
	Reward Function

	DEEP DUELING SARSA (2DSARSA) FOR MULTIPLE INTERSECTIONS
	Learning based on Deep SARSA 

	Results and Discussions
	Learning Performance of The Proposed 2DSARSA Agent using Different Reward Functions
	Performance of the Proposed 2DSARSA Agent in 10-hour Traffic Arrival Data
	Learning Performance of Different DRL-Agents

	CONCLUSION
	References

