
Distributed Delivery of Popular Videos over Ultra-
dense Networks

Chia-Cheng Yen

Department of Computer Science,
National Tsing Hua University,

Hsinchu, Taiwan
ccyen@vc.cs.nthu.edu.tw

Jia-Shung Wang
Department of Computer Science,

National Tsing Hua University,
Hsinchu, Taiwan

jswang@cs.nthu.edu.tw

Abstract—The application of video streaming is expected to

shift to mobile broadband as soon as the Ultra-dense Networks
(UDN) and High Efficiency WLAN (HEW) become popular. The
motivation of this paper is to propose a distributed delivery
scheme for streaming popular videos over UDN wireless
environments. The H.264 SVC scalable source coding and the LT
codes of rateless channel coding are both considered and
integrated to provide reliable and scalable video services
wirelessly.

In the allocation phase, a hot video clip is both SVC encoded
and LT encoded. Then, the coded data are randomly distributed
among small-cell stations (SCs) or related attached servers. In the
serving phase, one nearby SC immediately decodes its own LT
coded data once a request issued and broadcasts them to the
requesting user and the neighboring SCs to continue the undone
decoding process in parallel. Thus, the clients can receive data
from multiple SCs to achieve the goal of bandwidth aggregation.
Besides, once the decoding process being completed, the repairing
process is ignited to recover the possible node failure if exists.
Two data allocation schemes are considered to balance the
storage space, transmission bandwidth and fault tolerance
requirements. In the ultra-dense scenarios, our simulations show
that each request can be served with at least acceptable quality
and with one more enhancement layer in average under
communication loss rate less than 10% and possible node failures.

Keywords—Distributed decoding, H.264 SVC, LT codes, Ultra-
dense networks (UDNs), Bandwidth aggregation

I. INTRODUCTION
According to the CISCO’s VNI Mobile Forecast report,

mobile data traffic will grow 11-fold from 2013 to 2018, a
compound annual growth rate of 61%. Mobile video is the
largest and fastest growing segment; it is forecasted to account
for over 69.1 percent. Qualcomm is now providing the
developing solutions to meet “1000x challenge.”

To bring the network close to the clients to offer
unprecedented capacity, Ultra-dense Networks (UDN) or
Hyper-dense Heterogeneous and small cell networks
(HetSNets) [1] are driven to change the network deployment
principle. Thus, the deployment of ultra-dense small cells
(SCs) plays a key role of the promising approach to meet the
unprecedented demands. Mobile Content Delivery Network
(MCDN) [2] is gaining increasing attention due to huge
demand and popularity of mobile video traffics. As CDN,
MCDN takes full advantage of caching in the network edge

(i.e., base station or end-user devices) in such a way that the
buffered video can be delivered with less network latency and
traffic load. The motivation of this paper is to study distributed
delivery technologies for streaming popular videos over UDN
or HetSNets wireless environments.

In this paper, we propose a distributed solution for
providing popular videos streaming to clients in UDNs, where
all the SCs are randomly deployed in a fixed area. They are
equipped with computational apparatus and storage space,
which means each node, has ability to communicate with
neighboring SCs and decode received data. The proximity
discovery is employed so as to search neighboring nodes
dynamically. Therefore, the clients only need to download the
video data when the nodes are decoding encoded data.

LT codes of rateless channel coding [3] and the H.264
scalable video coding (SVC) [9] are both considered and
integrated to provide reliable and scalable video services over
UDNs. Data allocation of hot video clips is also an essential
issue to be considered to balance the storage space,
transmission bandwidth and fault tolerance. In our solution, LT
encoded data of these hot videos are randomly distributed
among the UDN nodes (small cells or attached servers). The
benefits of random allocation are three folds: (1) The
participating nodes can be randomly chosen instead of
selecting the specific nodes during the decoding process; (2)
Since the data are randomly allocated among nodes, the source
data can be recovered with high probability when multiple
node failures occur; and (3) The surviving nodes can be used to
repair the failed nodes by regenerating the encoded data if
available. In the delivery process, the distributed decoding and
broadcasting is proposed. The clients can receive and aggregate
the required data through the broadcasting of those participated
nodes simultaneously to get the benefit of bandwidth
aggregation.

The contributions of our work include the following.

(i). A feasible solution for streaming hot videos over ultra-
dense wireless environments is given. Initially, hot
videos are both SVC encoded and LT encoded, and the
coded data are randomly distributed among nodes.

(ii). Two random allocation schemes are considered to
balance the storage space, transmission bandwidth and
fault tolerance requirements.

(iii). A distributed decoding and delivery scheme to achieve

The 2015 IEEE International Workshop on Distributed Mobile Systems & Services

978-1-4673-7194-0/15/$31.00 ©2015 IEEE 116

the goal of bandwidth aggregation is proposed.

(iv). The source data can be recovered with high probability
when transmission errors and/or node failures occur. And
the surviving nodes can be used to repair the failed
nodes.

The rest of this paper is organized as follows. In Section II,
we briefly describe the concept of LT codes, SVC coding,
belief propagation, and related works. In Section III, our
proposed solution: distributed decoding and delivery is
described and discussed. In Section IV, simulation results are
presented. Finally, the conclusions and future works are given
in Section V..

II. BACKGROUND AND RELATED WORKS

A. Fountain Codes and LT codes
The basic idea of Fountain codes [3] is that receivers can

successfully recover K original source symbols with high
probability when they receive enough (little larger than K)
encoded packets which generated from a given set of source
symbols by the senders. Fountain codes are a class of rateless
code which means the number of encoded packets that can be
generated limitless and determined on the fly. There are a
variety of applications of fountain codes, including robust
distributed storage [4], wireless sensor networks, peer-to-peer
applications [5], and delivery of streaming content [6], [7], [8].

Luby Transform codes (LT codes) [3] are the first class of
practical fountain codes. LT codes employ the particularly
simple operation XOR, thus the coding complexity is quite
low. In LT codes, the decoder is able to recover K source
symbols from any subset of + O() encoded
symbols with probability 1- . Both encoding and decoding
complexity are of the order O(Kln(K/)), which are directly
affected by on the average degree of Soliton distribution [3].
The performance of LT codes is dominated by the degree
distribution. Ideal Soliton distribution is quite fragile since the
expected size of the ripple is one. The Robust Soliton
distribution ensures the expected ripple size large enough so
that the ripple never disappears in the process of decoding with
high probability. Figure 1 shows some typical degree
distributions.

Figure 1: The LT degree distribution for K = 1000, (a) Robust Soliton
distribution, c=0.1 and =0.5. Note that spike at K/R = 41; (b) Ideal
Soliton distribution.

B. Belief Propagation
Belief Propagation (BP) is a well-known efficient algorithm

for decoding LT encoded data [3]. The Figure 2 shows how BP
algorithm is applied to decode data. The BP decoding chooses
encoded data of degree one as the ripple set. In this example,
the ripple set is {2} initially. The edges connecting to this
symbol 2 are removed. After that, the new degree one symbols

(5 in this case) can be released, and included in the ripple set.
Decoding process can be done by performing BP approach
iteratively until ripple set is empty.

Figure 2: An example of LT encoding.

C. Scalable Video Coding
 Scalable Video Coding (SVC) [9] had been developed as an

extension of the well-known H.264/AVC standards. SVC
provides a coding scheme of bitstreams with multilayer (one
base and several enhancement layers) for three scalable
capabilities: temporal, spatial, and quality. Then such a
bitstream can be adapting to various client devices in error-
prone heterogeneous networks. In other words, a client device
that cannot receive all coded packets is tolerable; the SVC
video decoder is still functioning with some level of quality
degradation.

D. Channel Coding and Video Coding
 In [7], after partitioning the video file into several data

blocks, they are organized into different class according to the
importance of layer which they belong to. Then, data blocks
are distributed to Network Coding (NC) nodes. Each NC node
can perform receiving, transferring, and encoding operations.
In [7], the optimal rate allocation algorithm was proposed to
achieve maximum video quality and find the appropriate
distribution. Besides, applying channel coding as data
protection when transmitting video data in error-prone
networks, the multilayer property of SVC is adopted as well.
The advantages of combining SVC and rateless codes will be
discussed in the following sections. In [8], the received video
quality of each client is influenced by the number of gateway
(server) connections. In other words, a client is able to access
higher layer of video data and get better video quality if the
amount of gateway connections becomes large.

E. Data Allocation
The allocation problem of SVC layers in distributed storage

of gateways has been discussed in [8]. Let denote the layer of
the SVC encoded video and let l be the amount of video data
of layer . Their allocation plan is: each gateway contains l /
share of data for layer , i.e., each gateway has the base layer,
but only half of the 1st enhancement layer data, one-third of the
2nd enhancement layer data, and so on.

F. Unequal Error Protection and Expanding Window
The concept of Unequal Error Protection (UEP) is to

provide various levels of redundancy to different importance
data block, i.e., the base layer can obtain more redundancy than
any of enhancement layers. The related works of UEP and
rateless codes are discussed in [10], [11], [12], and [13]. The
idea of Expanding Window for UEP was proposed in [11]. All
of N input symbols are partitioned into k classes according to
their level of important, n1 + n2 +…+nk = N, where ni is the
number of input symbols in ith class for i = 1, …, k. The ith
expanding window contains data from class 1 to class i.

The 2015 IEEE International Workshop on Distributed Mobile Systems & Services

117

III. THE RPOPOSED SOLUTION
In this section, the proposed data allocation and delivery

scheme of hot videos are presented and discussed, as well the
distributed decoding (belief propagation) algorithm of LT
codes.

Our scheme is designated for UDNs. Assumed that the
number of nodes serving a request in UDN can be represented
by the following Poisson distribution [15] indicating that the
probability of k nodes which can stream video to the client
simultaneously. (() =) = | |(| |)! Eq. (1).
Where k is the number of nodes, represents the density of
nodes per unit area, and |A| is the area size. For example of
and |A|=1, the probability of the amount of nodes, n = N(A), can
be used to serve a request are: P(n n
P(n n

A. Distributed Belief Propagation
To achieve parallel decoding from distributed storage, we

proposed the scheme of distributed BP decoding. Once a
request from a client issued, some nearby SC immediately
responds and decodes its own LT coded data, then broadcasts
the degree-one symbols to the requesting client and the
neighboring SCs to continue the undone decoding process in
parallel. As shown in Figure 3, the source data are encoded and
allocated in two nodes. Node 2 begins to decode data when the
request from a client was received. In Node 2, the symbol 2 is
the only degree one symbol. After symbol 2 is released, it will
be broadcasted to the neighboring nodes. After Node 1 received
symbol 2, symbol 5 is released first and also symbol 3. Again,
these symbols will be broadcasted to Node 2. The distributed
decoding process is terminated as all of ripple sets are
exhausted.

Figure 3: The decoding process of distributed BP.

B. Data distribution and Allocation Schemes
In data allocation scheme, after both SVC encoded and LT

encoded, the coded data are randomly distributed among
nodes (SCs or related attached servers). The random
distribution has three benefits as listed in Section 1.

Data Allocation

 According to the concept of UEP, we provide various levels
of redundancy to data blocks with different importance. Of
course, the base layer should have more redundancy than any
of enhancement layers. The consideration of allocation should
balance the storage space, transmission bandwidth and fault
tolerance requirements. In our implementation, two allocations , , and , , are suggested and evaluated (see Section
IV). For each node (SC or related server), , , means: the
base layer is deployed with half of amount, the enhancement

layer 1 is deployed with 1/3 amount and the enhancement
layer 2 is deployed with 1/4 amount, respectively. In other
words, the probability of any encoded symbol appearing in a
node is 1/2 for the base layer, and 1/3 for the enhancement
layer 1, and so on.

Random Allocation with LT Encoded Packets

 The first allocation scheme employs the original LT coding
for source data. First, video is SVC encoded. Then, each sub-
bitstream (video layer) is independently LT encoded to
generate encoded packets as shown in Figure 4. Then, the
packets of a specific layer are randomly distributed to nodes
with a limited amount, , , or , , or others according
to the distribution in Eq. (1).

Random Allocation with Expanding Window Packets

 The second allocation applies the Expanding Window
technique [11] to encode source data. Similarly, video is SVC
encoded, all of the sub-bitstreams (video layers) are combined
into a single file in order of importance level. Then, we encode
the combined file as illustrated in Figure 5.

C. Encoding with LT Codes
In our implementation, the degree distribution follows the

robust Soliton distribution and the parameters c and are set
as 0.02, and 0.01, respectively. For c=0.02 and =0.01, the
probability of generating degree one symbols becomes
extremely low, but the probability of degree two symbols
increases instead. Those parameters are not suitable for the
small number N of source symbols, which would cause the
high probability of decoding failure. However, the large size
of N is appropriate for applying them. In our experiments, the
number of source symbols N is set as 1,000.

Figure 4: LT encoding process.

D. Delivery Scheme
By using distributed BP decoding, the degree one data

from other nodes are needed. As a result, the degree one data
are transferred not only for clients but also for the nodes
requiring for new ripple symbols to prevent early decoding
termination. Therefore, each node broadcasts its own self-
generated degree one symbols to the neighbors participating in
the decoding process. The distributed BP has advantage of
parallel processing so as to reduce the execution time of LT
decoding.

The 2015 IEEE International Workshop on Distributed Mobile Systems & Services

118

Figure 5: LT encoding process with Expanding Window.

Distributed Decoding and Broadcasting

 As mentioned before, each node is allocated a limited
amount of encoded data for base and enhancement layers.
Thus, they all can perform decoding process by exchanging
degree one symbols among nearby nodes sharing the same
coverage of the radio station. See Figure 6.

Figure 6: The illustration of distributed decoding.

 Due to the random deployment (allocation), the decoding
process can be initiated at any node. In other words, it is not
necessary that a node act as the master server to control other
nodes. Any node can be an initiator or a participator
asynchronously. The flow of the distributed decoding process
is depicted in Figure 7.

Figure 7: The flow chart of distributed decoding process.

IV. EXPERIMENTAL RESULTS
Our simulation was implemented on the environment of

cloud platform with ITRI Cloud OS Solution
(http://openstackdays.com/files/A5_ITRI.pdf). Each VM is
equipped with Intel E5645 2.40 GHz, 2G RAM, and Win7
64bits. The test video is “Vidyo.yuv” with resolution
1280X720, 60 frames per second and coded as three-layer
SVC. Our goal is to achieve average performance of quality:
one base layer plus one enhancement layer.

A. Decoding Rate
The successful decoding rates of random allocation with

parameters , , of loss rates 0%, 5%, and 10% are shown
in Figure 9(a)-(c). The base layer can be completely decoded
as the number of nodes down to 2. And 3 nodes and 4 nodes
are needed for enhancement layers 1 and 2, respectively. As
for loss rates 5% and 10%, more nodes will participate in
decoding due to the loss. Consider Figure 9(d), the Expanding
Window case with loss rate 10%. Comparing to random
allocation, more number of nodes are going to participate in
decoding because data of different layers are mixed in
encoding. The higher layers have to wait for the lower layers.
This situation becomes worst as the loss rate increasing.

 (a) 0%

 (b) 5%

 (c) 10%

(d) Expanding Window with loss rate 10%

Figure 8: The decoding rates of random allocation , , with loss
rates (a) 0%, (b) 5%, (c) 10% and the Expanding Window with loss
rate (d) 10%.

The 2015 IEEE International Workshop on Distributed Mobile Systems & Services

119

B. Video Quality
The video quality is illustrated in Figure 9 with different

loss rates. We can observe that the random allocation with
parameters , , has the better quality with less number of
service nodes than that of other allocations. As mentioned, the
goal is to achieve one base layer plus one enhancement layer
for clients. The allocation , , achieves this goal with all
three loss rate 0%, 5%, and 10%. In the case of no loss, all the
layers can be completely decoded with four nodes. The
allocation , , also achieve the goal with 4 nodes.
However, the allocation with Expanding Window fails to
achieve since the drawback mentioned above.

(a)

 (b)

 (c) Expanding Window
Figure 9: PSNRs of SVC layers with random allocations, (a) , , , (b) , , , and (c) Expanding Window.

C. Transmission Bandwidth
The transmission bandwidth of the randomly allocation

with parameters , , is depicted in Figure 10(a). The
transmission bandwidth is slightly larger than the source data
when the loss rate is 0%. Due to the data loss, the transmission
bandwidth is enlarged to ensure the lost data can be
successfully received. It is easily seen that the enhancement

layer 2 required more bandwidth than others because more
nodes to participate in decoding. Moreover, the required
bandwidth of the 2nd enhancement layer drops when the loss
rate is 0%. The situation seems odd; however it can be
explained by the proportion of repeated symbols as shown in
Figure 10(b). Consider the allocation of , , , each base
layer has half of encoded symbols, thus some degree one
symbols may be generated by two nodes simultaneously, thus
the proportion of repeated symbols is higher than that of
enhancement layers 1 and 2.

(a) Bandwidth

(b) Redundancy

Figure 10: The transmission bandwidth and the rate of repeated
symbols (transmission redundancy) of random allocation , , .

D. Storage Space
Table I lists the storage space requirement and proportion

of each video layer in different allocation schemes. The
amount of data allocated in each node, random allocation with , , requires the largest storage space than others while
achieves the desired video quality with less nodes. The
allocation with Expanding Window requires least storage
space, but it fails to achieve the goal of video quality.

Table I. Storage space of allocation schemes.
Allocation Storage

Space
Proportion

Base Layer EN Layer 1 EN Layer 2 12 , 13 , 14 2.7303x 0.4615 0.3076 0.2307 12 , 13 , 15 2.3468x 0.4838 0.3225 0.1935

Expanding
Window

2.0603x 0.5000 0.3333 0.1666

For unbiased comparison, we extend the storage space of
Expanding Window to 2.5799x. Unfortunately, as the loss rate
is 10%, it cannot achieve as well, see Figure 11.

The 2015 IEEE International Workshop on Distributed Mobile Systems & Services

120

Figure 11: The decoding rate of Expanding Window of loss rate 10%
with storage space 2.5799x.

E. Bandwidth per Storage Unit
Table II lists the bandwidth requirements for different

schemes. We observe that allocation with , , needs least
bandwidth to decode video since the amount of participating
nodes is less than that of others. As mentioned, allocation with
Expanding Window requires more nodes than others; it needs
more bandwidth obviously.
Table II. Bandwidth of allocation schemes.

Total Bandwidth

Loss Rate=0% Loss Rate=5% Loss Rate=10% 12 , 13 , 14 7.9108 MB 8.9009 MB 9.7333 MB 12 , 13 , 15 7.9177 MB 9.1533 MB 9.8143 MB

Expanding Window 7.9956 MB 9.0236 MB 9.7013 MB

V. CONCLUSION AND FUTURE WORK
Mobile video is the largest and fastest growing segment,

and MCDN is a feasible platform to serve huge demand of
mobile popular video traffics. As CDN, MCDN takes full
advantage of caching in the network edge in such a way that
the buffered video can be delivered with less network latency
and traffic load. This paper evaluated the distributed delivery
techniques for streaming hot videos over ultra-dense wireless
environments. Initially, in the allocation phase, a hot video clip
is both SVC encoded and LT encoded. Then, the coded data are
randomly distributed among nodes (SCs or related attached
servers). Two random allocation (distribution) schemes, LT
codes and LT codes with Expanding Window are considered to
balance the storage space, transmission bandwidth and fault
tolerance requirements. The video quality (one base layer plus
one enhancement layer) for clients is guaranteed. The
allocation , , achieves this goal with all three loss rates
0%, 5%, and 10%. The successful decoding of random
allocation with parameters , , of loss rates 0%, 5%, and
10% are also proved. The transmission bandwidth is slightly
larger than the source data when the loss rate is 0%. Due to the
data loss, the transmission bandwidth is enlarged to ensure the
lost data can be successfully received. Finally, the storage
space requirement and proportion of each video layer in
different allocation schemes are presented and discussed.

The wireless P2P streaming solution with hybrid caching

could be considered in the future work to reduce the cache
memory size and enhance the bandwidth efficiency. And, to
further improve the cache placement and reduce the backhaul
congestion, the concept of proactive caching to develop a
popularity-based pre-caching scheme is a possible solution

REFERENCES
[1] Insoo Hwang, Bongyong Song, and Samir S. Soliman, “A Holistic View

on Hyper-Dense Heterogeneous and Small Cell Networks,” IEEE
Communications Magazine, June 2013, pp. 20-27.

[2] Afif Osseiran, et al., “Scenarios for 5G mobile and wireless
communications: the vision of the METIS project,” IEEE
Communications Magazine, Vol. 52, No. 5, May 2014, pp. 26 - 35.

[3] M. Luby, “LT Codes,” in Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science, November 2002, pp.
271–280.

[4] Henry C. H. Chen, Yuchong Hu, Patrick P. C. Lee, and Yang Tang,
“NCCloud: A Network-Coding-Based Storage System in a Cloud-of-
Clouds,” IEEE Transactions on Computers, Vol. 63, No. 1, January
2014.

[5] Valerio Bioglio, Rossano Gaeta, Marco Grangetto, and Matteo Sereno,
“Rateless codes and random walks for P2P resource discovery in Grids,”
IEEE Transactions on Parallel and Distributed Systems, Vol. 25, No. 4,
April 2014.

[6] Hsu-Feng Hsiao, and Yong-Jhih Ciou , “Layer-aligned Multi-priority
Rateless Codes for Layered Video Streaming,” IEEE Transactions on
Circuits and Systems for Video Technology, Vol. PP, No. 99, January
2014.

[7] Nikolaos Thomos, Jacob Chakareski, and Pascal Frossard, “Prioritized
Distributed Video Delivery With Randomized Network Coding,” IEEE
Transactions on Multimedia, Vol. 13, No. 4, August 2011.

[8] Mohsen Sardari, Eun-Seok Ryu, Faramarz Fekri, and Nikil Jayant,
“Multilevel Diversity Coding via Rateless Codes for Reliable and
Scalable Video Multicasting,” IEEE Communications Letters, Vol. 17,
No. 5, May 2013.

[9] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand, “Overview of the
Scalable Video Coding Extension of the H.264/AVC Standard,” IEEE
Transactions on Circuits and Systems for Video Technology, Vol. 17,
No. 9, September 2007.

[10] Shakeel Ahmad, Raouf Hamzaoui, and Marwan M. Al-Akaidi, “Unequal
Error Protection Using Fountain Codes With Applications to Video
Communication,” IEEE Transactions on Multimedia, Vol. 13, No. 1,
February 2011.

[11] Dino Sejdinovic, Dejan Vukobratovi ´ c, Angela Doufexi, Vojin Šenk,
and Robert J. Piechocki, “Expanding Window Fountain Codes for
Unequal Error Protection,” IEEE Transactions on Communications, Vol.
57, No. 9, September 2009.

[12] Kai-Chao Yang and Jia-Shung Wang, “Unequal Error Protection for
Streaming Media Based on Rateless Codes,” IEEE Trans. on Computers,
Vol. 61, No. 5, pp. 666-675, 2012.

[13] Kuo-Kuang Yen, Yen-Chin Liao, Chih-Lung Chen, John K. Zao, and
Hsie-Chia Chang, “Integrating Non-Repetitive LT Encoders With

 IEEE
Transactions on Multimedia, Vol. 15, No. 8, December 2013.

[14] Ghid Maatouk, and Amin Shokrollahi, “Analysis of the second moment
of the LT decoder,” IEEE International Symposium on Information
Theory, June 28 2009-July 3 2009, pp. 2326–2330.

[15] Benyuan Liu , and Don Towsley, “A Study of the Coverage of Large-
scale Sensor Networks,” IEEE International Conference on Mobile Ad-
hoc and Sensor Systems, Oct. 25-27 2004, pp. 475–483.

The 2015 IEEE International Workshop on Distributed Mobile Systems & Services

121

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

