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Abstract—In wireless sensor networks (WSNs), how to reduce 

the power consumption thus lengthen the system life time is one 
of the key issues to sustain the services. According to the radio 
model, packet transmission depletes a much more substantial 
amount of the energy budget when compared to sensing and 
processing. Therefore, it is desirable to compress or filter the 
sensing data effectively in order to save the transmission power 
eventually. Recently, the model-based scheme is proved to be a 
promising solution, which usually approximate temporal data by 
a piecewise linear function. In this paper, a tree-structured linear 
approximation scheme is proposed to compress sensing data 
according to an optimal rate-distortion (R-D) relationship. The 
main design goals are two: (1) providing a bottom-up procedure 
to explore the best-fit piecewise partition for modeling globally; 
(2) considering the heterogeneity of sensors simultaneously using 
our proposed rate-distortion adjustment. That is, a distortion 
allocation procedure is designed to allocate the distortions to 
sensor nodes for aware of the heterogeneous properties. Thus the 
proposed spatio-temporal scheme is adaptable to heterogeneous 
sensors, various sampling rate, and outliers of data.  A real-world 
dataset simulation is applied to demonstrate the effectiveness. 
For nearly all combinations with distortion requirements, the 
proposed method shows better performance than the earlier 
approaches in terms of data reduction. 

Keywords: WSNs; model-based scheme; linear approximation; 
compression; convex hull; rate-distortion; outliers removal 

I.  INTRODUCTION 
Wireless sensor networks (WSNs) are basically data 

gathering systems that utilize a large number of small, battery-
powered, and resource-limited sensing devices to collect 
heterogeneous signals simultaneously. These wirelessly linked 
disposable sensor nodes observe physics data in fixed time 
intervals and then communicate either among each other or 
directly to the base station. The sink (base station) will store 
up all the data it receives in order to be applied to designated 
fields of human activity including surveillance, healthcare, 
environmental and utility monitoring. Power consumption is a 
key issue to sustain the services effectively. Zhang, Meratnia, 
and Having [1] showed that sensors with low battery level 
cause more errors and outliers than those with a full battery. 
According to the radio model, packet transmission consumes a 
much more substantial amount of the energy budget compared 
to sensing and processing.  

Many techniques have been developed to reduce the 
transmission power consumption while ensuring fidelity 
during gathering. Modeling or sampling is a better solution to 
deal with this problem, which uses a small set of features to 
represent the complete data signals.  

There are three main common applicable categories of data 
collection models. The first one is simply prolonging the 
updating interval in periodic-based data collection, which will 
reduce the frequency of data being sent. However, longer 
updating periods might decrease the data fidelity. Second, 
event-based data collection, which means sensors will only 
report their status to the sink when predefined events happen. 
This is a more preferable method, but it also creates additional 
overhead for event monitoring and communication between 
sensors. The third, and perhaps the most promising solution 
[2], is the model-based data collection scheme, which 
transmits models to approximate data instead of sending the 
full set of original signals. In WSNs, sensor will continuously 
sense the data in short intervals, so the data stream in a WSN 
is highly correlated temporally. It is a good idea to use a small 
number of model parameters to approximate data, which 
would lower both the storage cost and the transmission cost. In 
the discussions in [2], the authors categorize model-based 
compression schemes into four types: Constant Model, Linear 
Model, non-Linear Model and Correlation Model. 

For examples, Piecewise Constant Approximation (PCA) 
[3] and Adaptive Piecewise Constant Approximation (APCA) 
[4] are simple methods which model the data in windows with 
a maximum error constraint (tolerance) = (dmax-dmin)/2, where 
dmax and dmin are the maximum value, minimum value within a 
window, respectively. Piecewise Linear Histogram (PWLH) 
[5] is an extension of APCA. The only difference between 
these two is a constant or a line (in PWLH) to fit the data. The 
Slide Filter (SF) [6] is another piecewise linear approximation 
method which is currently the best method in compression 
ratio [2]. SF maintains a set of possible lines initially, and 
when new data arrives, SF checks whether these lines can be 
used for approximation. A line will extend for as long as 
possible. And it will stop when the line set becomes empty 
due to unmatchable input. Chebyshev Approximation (CHEB) 
[7] is a nonlinear-model approach, which used the Chebyshev 
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model to approximate the data in fixed-length windows. For 
the Grouping and Amplitude Scaling (GAMPS) approach [8], 
it groups similar sensors together, and chooses one as the base 
and only transmits the margin between the base and rest of the 
signals in the group to the sink.  

Recently, Compressive Sensing (CS) has attracted great 
research attentions, which can acquire and compress data at 
the same time via randomness measurements. In addition, due 
to the simplicity of the acquisition at the sensor nodes, the CS 
scheme is a fit for distributed applications, such as distributed 
video coding [9] and WSNs [10] [11]. The application of the 
spatial-temporal CS scheme to WSNs [12] [13] provides 
promising possibility for data gathering with stochastic spatio-
temporal models. Three steps in ST-HDACS [13] are: (1) in 
each time snapshot a randomly selected subset of sensors 
participate the data aggregation; (2) employs an adaptive 
hierarchical aggregation for data routing; (3) utilizes the 
Matrix Completion algorithm to recover all the data for the 
entire network over the whole data collection time.  

Unlike the above scheme, our proposed method 
approximates temporal data by a piecewise linear function, 
consisting of connected line segments. Initially, a set of 
possible line segments of equal size is maintained as a 
complete binary tree for W consecutive data of current stream 
in each of sensor nodes. Linear regression is employed to draw 
the best-fit line first, and then the rate-distortion (R-D) 
pruning process is applied to trim the tree to several candidate 
forms of incomparable R-D pairs. Optimal distortion 
allocation will be assigned to each sensor. After that, each 
sensor node will locate the most fitting R-D pair and retrace 
the R-D pruning process to extract the most satisfactory tree. 
The tree further shrunken by merging possible pairs of 
segments iteratively to a minimum bit rate obeying the 
distortion. Finally, a refinement procedure with the help of 
outlier removal is implemented to further compress the data 
streams. 

SF is an on-line method, whether the line should be further 
extended to or stopped is based on the incoming data. Our 
approach is an off-line method, which draw the approximation 
line globally in the window of W samples. This means that our 
method can use a global view to deal with the data.  

Our contributions in this paper are two: (1) providing a 
bottom-up procedure to explore the best-fit linear 
approximation globally; (2) considering the heterogeneity of 
sensors simultaneously using our rate-distortion adjustment. 
Furthermore, with our outlier removal procedure, thus, the 
proposed scheme is adaptable to heterogeneous sensors, 
various sampling rate, and outliers of data. 

The rest of this paper is organized as follows. In Section II 
related studies are introduced and discussed. A detailed 
description of the proposed method is delineated in Section 
III. In Section IV, experimental results of several life datasets 
are presented to demonstrate and compare the performance 
between our proposed method and the Slide Filter method. 
The conclusion is drawn in Section V. 

II. BACKGROUND 
Following are the introduction to the studies which are 

highly related to or being employed in our proposed method. 

A. The Slide Filter 
As mentioned before, the Slide Filter [6] is currently the 

best method in compression ratio. To compare our method 
with SF, this section will explain the SF model in detail. 

Initially, temporal numerical data stream is represented as 
a 2-D data point (ti, xi) sequence, i ∈ [1, n]. Given the target 
distortion ��� SF then finds an approximate line, the difference 
between this line and each point should be lower than �.� SF 
names the first two points of a line, x1 and x2, and then uses 
these two points as references to draw two lines. One of the 
lines, lower bound L1, passes through x1+ε  and x2-ε, while the 
other line, upper bound U1, passes through x1-ε and x2+ε. 
Every line that passes through the intersection of these two 
lines and between L1 and U1 will have difference lower than ε 
with either x1 or x2. So the lines sloping between L1 and U1 can 
be combined as a set of lines to be used in the model. 

Now add a new point, x3. Using the same rule as above to 
draw four lines: L13 , U13, L23 and U23. With a simple 
observation, a line with a slope higher than U13, U23 or U1 will 
fail to fit all three points. Similarly, all line with a slope lower 
than L13, L23 or L1 will fail to fit all three points. So we can set 
the new upper bound as U = min(U13, U23, U1), and the new 
lower bound as L = max(L13, L23, L1). Using the same process 
and iterative to reduce the upper bound and lower bound until 
the new point xi enters the model with xi+ε being smaller than 
the current lower bound or xi-ε being higher than current upper 
bound. Then the line will stop at xi-1. Figure 1 is a simple 
demonstrative example. 

 
Figure 1: A demonstrative example of the Slide Filter. 

B. Tree Structure Optimal Pruning 
Tree-structured Optimal Pruning method begins with an 

initial large tree, and prunes back until the pruned sub-tree 
have the fewest number of leaves while maintaining a given 
level of fidelity. This method is first introduced by Breiman, 
Friedman, Olshen, and Stone [14] for classification 
applications. The method was later adopted by Chou, 
Lookabaugh, and Gray [15] to conduct a complete analysis in 
streaming data encoding. 

In the tree structure, each leaf holds a part of the sequential 
data for compressing. Parent node combines all of the data of 
its offspring, thus a higher level node will contain fewer data. 
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A node also retains its distortion and bit rate after 
compression. 

With these principles, a full tree with n leaves (L1, L2, …, 
Ln) divide up all data in the root to n�disjoint parts. Leaves in 
this tree support a small amount of data so that a low 
distortion is preserved at the cost of a high bit rate. When the 
R-D pruning is applied, the number of leaves will decrease, 
and each remaining leaf will hold more data. This can reduce 
the bit rate, but at the expense of an increase in distortion. 

C. Rate Distortion Optimal Allocation 
Here we describe how to consider the heterogeneity of 

sensors simultaneously. We provide: (1) a model of 
characterizing the rate-distortion behavior of each sensor 
signal; and (2) a distortion allocation procedure of distributing 
the distortions to sensor nodes for aware of the heterogeneous 
properties. 

When bit rate R is fixed and large enough, the distortion 
D(R) is proportional to 2-2R [16]. If R is fixed with a small 
number (i.e. R < 1�bit/pixel), D(R) varies as R1-2γ [16]. Thus we 
can arrive at the following relation: 

D(R) = CR1-2γ.                                (2.1) 
Here γ > 1/2 and C > 0 are parameters dependent on the 
fluctuation of signals. Based this rate-distortion relationship, 
we can reorganize the allocation of bit rates among sensors to 
reach a lower distortion result. For example, if a sensor with 
low C and γ, at the same rate allocation, its distortion will be 
lower than one with higher C and γ. So we can reallocate a 
lower bit rate to this sensor, and reserve additional bit rate for 
sensors with higher C and γ.  

In our early works [17][18], we utilize this rate-distortion 
technique to solve the optimal rate-distortion allocation 
problem for WSNs. The problem is formulated as below: 
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III. THE PROPOSED METHOD 

A. Problem Formulation 
The wireless sensor network consists of N sensors, s1, s2, 

…, sn, and a sink node D.  The network graph G = (V, E) has 
a node set V = {s1, s2, …, sn, D}, and edge set E consisting of 
edges between nodes that can communicate with each other 
directly (in one hop). Each sensor has an instantaneous 
reading ��� at time t, and we denote the sensor signal of node i 
within a window of size W as (���� ���� � � �� �. In the model-
based approach, these W number of sensing data are usually 

approximated by piecewise linear approximation of line 
segments, L1, L2, …, Lp, (1≤p≤T), each of which can be 
modeled by a linear regression with intercept a and slope b. 
This p number piecewise line segments can be recognized as a 
partition π of these W sensing data. That is, these W 
consecutive data is divided into a sequence of variable-length 
data segments. Thus, the tth estimated value of  ��� (say in the 
τth point of the qth line segment) can be calculated as:                       
                                  !"�# � $% & ' � (%                                      (3.1) 

Usually, the Mean Square Error (MSE) is used to measure 
the estimation error )�!��� !"��� between predicted value and its 
corresponding raw data. Thus, the distortion of node i for a 
partition π can be represented as: 
                            ��� � * +!�

� , !"�
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� 

�.� /                                 (3.2) 
As mentioned above, the goal is to reduce the volume of 

transmission while maintaining data fidelity. So, the problem 
can be formulated as:  
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where αi is the transmission cost of each sensor i to the sink D. 

As discussed in Section II.C, our optimal distortion 
allocation procedure collects the model parameters c and γ 
from all sensor nodes. With these data, the sink node could 
calculate the optimal distortion allocation for the sensors. 
Thus, a simple tree is constructed for this purpose. We 
describe the flowchart of the proposed method for solving 
Problem (3.3) in the following subsection. 

B. The Flowchart 
In this paper, a tree-structured linear approximation with 

optimal rate-distortion (R-D) control method to deal with the 
sensor data signal is proposed. Similar to other approaches, 
our method approximates each sensor data signal by a 
piecewise linear function.  

Initially, a set of possible line segments of equal size is 
maintained as a complete binary tree for W consecutive data 
collected in each of sensor nodes. Linear regression is 
employed to draw the best-fit line first, and then the rate-
distortion (R-D) pruning process is applied to trim the tree to 
several candidate forms of incomparable R-D pairs. Then, an 
optimal distortion allocation procedure is employed to allocate 
the distortions to sensor nodes accordingly. With the assigned 
distortion value, each tree is further shrunken by iteratively 
merging possible pair of segments to a minimum rate (# of 
line segments) while obeying the distortion. Finally, a 
refinement procedure, with the assistance of outlier removal, 
is implemented to further compress the data streams. The 
flowchart of our method is depicted as the Figure 2 below.  

C. Initialization 
There are two parameters. The first one is window size W, 

a parameter that decides how many consecutive sensing data 
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will be processed simultaneously. The second one is target 
distortion Dtarget, which is the total distortion limitation. In 
other words, in the whole process of compression, and the sum 
of all sensors distortion will not be greater than Dtarget. Even 
though the Optimal Distortion Allocation step will allocate the 
optimal target distortion automatically, the sum of these 
allocated distortions should be within the designated 
threshold.  

 
Figure 2: The flowchart of the proposed method. 

D. Tree Construction with Linear Regression 
A complete binary tree is constructed initially. The root 

hold the entire W (assumed to be power of two for simplicity) 
data, {d1, d2,…, dW}. Two children of the parent node hold left 
half and right half of data, respectively. An example of initial 
tree with W = 512 is depicted in Figure 3.  

 
Figure 3: Example for complete binary tree with W = 512. 

 
Each tree node uses linear regression to extract the slope 

and the intercept of possible line that can be used to 
approximate its own data set perfectly. With the slope and the 
intercept, the compression rate and distortion can be 
calculated. The lowest level of the tree is logW. Each node in 
level-logW has exactly two sensing data, the slope and the 
intercept can be obtained by simple calculation. And these 
nodes have no distortion because the line perfectly represents 
the two sensing data. That is, the distortion D of this complete 
binary tree is 0; however its rate R will be the largest.  

Consider the three cases in Figure 4. In case (b) the binary 
tree is fully formed. Since the window size W and tree-
structure are known, it is easy to locate the start point and end 
point of the line without transmitting their location to the sink. 
In the following steps, this tree will be trimmed with fewer 
nodes eventually so as to find out a better (suboptimal) 
partition with corresponding line segments. In the extreme 
case (d), only one line segment left, its corresponding tree is 
singleton with {0}. Its distortion D will be the largest, while 
rate R is the smallest. 

 
Figure 4:  An example of tree with eight nodes. (a) the data, (b) the 
complete binary tree before pruned, (c) the tree trimmed at node 2 
and (d) the tree with only root node, which corresponds to one single 
line. 

E. Tree Pruning 
In a graph with bit rate and distortion as the X-Y axes, 

every sub-tree of the full tree can be drawn as a point in the 
graph according to its distortion and bit rate. The most 
desirable sub-tree will be the one with lowest distortion and 
bit rate, hence this means that sub-trees that fall within the 
lower boundary of the convex hull has priority over ones that 
do not. In [15], their algorithm considers the slopes between 
each pair of vertices in this R-D plane, and then locates the 
vertices that results from the sub-trees after pruning. By 
locating the vertices in this manner, the curve in lower 
boundary of the convex hull is traced in a clockwise fashion. 

For a pruned sub-tree S, let the bit rate denoted as R(S) and 
the distortion be D(S). All of the R-D pairs (R(S), D(S)) can be 
depicted in the R-D plane, see Figure 5(a). As mentioned, the 
singleton tree T(t0) has the smallest R and the largest D while 
the whole tree T has the largest R and the smallest D. For each 
pruned sub-tree S of T, R(S) ≤ R(T) and D(S) ≥ D(T). Thus, 
(R(S), D(S)) is fundamentally monotonic affine. Therefore, in 
the R-D plane, (R(T(t0)), D(T(t0))) is the upper-left corner of 
the convex hull and (R(T), D(T)) is the lower-right corner. 

The goal of the Tree Pruning procedure is to locate the 
vertices clockwise around the lower boundary of the convex 
hull, t0 0� 12 0� �� 0� 13�0� 14. We start with T and prune it back 
to the root t0. 
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Figure 5: (a) The R-D plane and the R-D pairs corresponding to 
pruned trees. (b) An example to locate points on the convex hull. 
 

Consider the case of pruning a tree from Si to Si+1 in Figure 
5(b). First, we prune off a single branch from some interior 
node t∈ Si out of Si to get the set of all pruned sub-tree of Si. 
Each of the pruned cases has its own R-D pair depicted as a 
point on the R-D plane. For a case, say St, the slope of the line 
segment between St and Si is Δ D(St)/ Δ R(St). Then Si+1 is 
chosen to be such a St with the minimum slope among all 
pruned sub-tree of Si. 

When all such nodes being fixed, we can model the R-D 
function with appropriate c and γ later. The worst-case time 
complexity to locate this lower boundary of the convex hull is 
O(Wlog2W) [15], where W is the number of data points in a 
processing window. 

F. Optimal R-D Rate Allocation 
Once the R-D pairs, (C, γ)s, corresponding to the all sensors 

received by the sink, based on Eq.(2.3), the Optimal Rate-
Distortion Allocation (ORDA) procedure will calculate the 
optimal distortion for each of sensors under a given target 
distortion Dtarget.. 

G. R-D Pair Selection and Tree Pruning 
Once the assigned distortion (by ORDA) returned to each 

sensor, it retraces the convex-hull path to locate the first R-D 
pairs lower than the given distortion. Consider Figure 6 as an 
example. 

 
Figure 6: Locate the appropriate R-D pair in the convex path. 

 
Each node in the above figure is an R-D pair 

corresponding to a sub-tree of the complete binary tree. The 
left-top one is the tree with only one node, the root, and the 
right-bottom one corresponding to the original complete 
binary tree. After executed the Tree Pruning procedure, the R-
D pairs in the lower convex hull was fixed and marked, and 
the other nodes not in the lower convex hull are ignored in the 
following steps. After ORDA, each sensor gets its assigned 
(target) distortion, which is marked as a horizontal line in the 
above figure. And the appropriate R-D pair just lowers than 
the horizontal line is marked in red. Finally, the pruned tree 
corresponding to this R-D pair will be used to construct the 
adequate piecewise linear approximation. 

H. Pairwise Merging 
There exists some limitation in the Tree Pruning procedure, 

that is, the line segments are of size 2l for some l, because of 
the binary tree structure. Consider Figure 7 as an example. In 
the tree pruning procedure, the data corresponding to leaf b is 

not similar to the data in leaf c, so they cannot be merged, thus 
two line segments are still required ultimately. Conversely, the 
data in leaf a and leaf b are quite similar, however, these two 
nodes cannot be merged because in the tree-structured model. 

 

 
Figure 7: An illustration of pruned tree that can be merged further. 
 
Here we give a pairwise merging procedure to solve this 

problem. For a pruned tree and the corresponding 
approximation line segments, we conduct a scan procedure as 
follows. Each pair of adjacent segments is considered being 
merged, linear regression is applied then to get the 
approximated solution for this merged data set and calculate 
the R-D pair after merging. If both the rate is smaller and the 
distortion is not greater than the assigned (target) distortion, 
this merging is seen as an acceptable choice. This scan 
procedure continues until no more feasible merging found. 

I. Merging with Outlier Removal 
Outlier (noise) is another issue [1]. Two data segments 

cannot be merged further, sometimes is influenced by the 
existing noises. Outliers are sensing data that are far away 
from the mean than considered acceptable; however, how to 
justify and remove outliers is a challenge. In this paper, we 
provide an Outlier Removal procedure to extract and remove 
these odd data points in the sense of the merging criterion. 
Actually, we do not ignore these points instead of sending 
them as extra data. The extraction is simply selecting the point 
with the extreme value per iteration.  

Similar to the processing in the Pairwise Merging 
procedure, after one outlier is eliminated from the data set, 
two neighboring segments are assumed being merged, linear 
regression is applied to get the approximated solution for this 
merged data set. And then calculate the R-D pair after merging 
to check the value for merging (the same criterion used in 
Pairwise Merging). If it is feasible, this merging will proceed 
(using Pairwise Merging); otherwise, this step is terminated. 

IV. EXPERIMENTAL RESULTS 

A. Data set abd Parameter Settings 
We conducted series of simulations to demonstrate both the 

coding efficiency and computing feasibility of the proposed 
approach through the dataset in [2][19]. This dataset was 
extracted from a wide variety of sensors deployed for an 
environmental monitoring project. Several issues are 
considered here, such as the heterogeneity of sensors, the 
volatility of data values, the diversity of sampling rates, and 
the range of regions where the data were collected. In our 
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simulation, 16 heterogeneous sensors of 3,072 data items are 
employed. The dataset and corresponding statistics are listed 
in Table 1. 

Table 1: Typical sensors in data set [19]. 
 Sampling 

rate 
min max mean Standard 

deviation 
Short-term 
fluctuation 

moisture 300 sec. -4.13 1340.00 221.22 5.15 medium 
humidity 60 sec. -3.19 129.93 56.14 14,24 medium 
lysimeter 300 sec. 1642.25 2347.99 1935.86 47.82 medium 
snow-
height 

600 sec. -3062 2613 21.83 87.54 low 

temperature 60 sec. -58.4 275 0.85 6.81 medium 
CO2 16 sec. 350 2000 541.34 162.91 high 
radiation 600 sec. -1912 7997 680.37 224.562 medium 
wind-
direction 

60 sec. 0.0 359.99 122.16 74.49 high 

 
In [2], The Slide Filter (SF) is recognized as one of the 

most powerful methods with leading compression ratios. SF is 
included in the convenient framework [2].  

All the experiments were run on a PC with Intel Core i5 
processor @ 3.10 GHz and 3.42 GB of main memory.  

As in [2], the size of each signal is of 32 bits, and the 
parameters of each line segment, slope and intercept are also 
of 32 bits. The overhead of coding a tree is 2 bits times the 
number of internal nodes. Each merging requires 1 bit for each 
leaf, and each outlier costs 32 bits for the value and 9 bits for 
the position if the window is of size 512.  

The indices for comparison are: the compression ratio, the 
distortion and the execution time. The distortion is measured 
using the Normalized Root-Mean-Square Error (NRMSE) and 
the Bit Rate is defined below: 

%100
Bit Data #

Bit Data #
 ×=

Original

Compress
RateBit  

B. Comparing with the Slider Filter 
Table 2 lists the performance comparison between our 

proposed method and the Slide Filter. Figure 8 gives a 
demonstrative example. Note that the target distortion of SF is 
the maximum error tolerance ε = (dmax-dmin)/2, but it is 
NRMSE instead, in our solution. To tune with the same 
distortion (NRMSE) for comparison, we manually choose ε 
for SF, and modulate our target distortion for an agreement in 
both NRMSEs. 

Table 2: The comparison of bit rate and NRMSE. 
 Proposed Method Slide Filter 
 Bit Rate NRMSE Bit Rate NRMSE 

moisture 3.5% 8.2% 12.5% 7.8% 
humidity 0.6% 6.7% 2.0% 7.2% 
lysimeter 0.9% 7.6% 4.4% 6.3% 
snow-height 7.9% 2.8% 11.1% 4.1% 
temperature 1.5% 7.6% 2.1% 8.4% 
CO2 5.6% 7.3% 17.1% 7.8% 
radiation 12.1% 6.3% 17.4% 8.0% 
wind-direction 14.3% 6.5% 26.3% 7.2% 

In Table 2, it is easy to see that our proposed method 
outperforms SF in terms of compression rate with the similar 
distortion. The main reasons are: 

• Less overhead: Our overhead includes: (i) the slope and 
the intercept for each node, (ii) the tree structure for 
each window W, which amounts to almost 2 bits times 
the number of leafs in the tree. The overhead of SF 
includes: the start and end points, which results in 
almost 1.5 times the overhead of our method. So, even 
though our method has to transmit more lines than SF, 
we are able to still achieve a better compression ratio. 

• Global optimization: SF is an on-line method which 
dealing with data on the fly, whether the line should be 
further extended to or stopped is based on the 
characteristics of incoming data. Our method is an off-
line method, which draw the approximation line 
globally in the window of W samples. This means that 
our method can use a global view to deal with data. 
When most of the data in the data segments are very 
close to the line, the method allows for some data far 
away from the approximation line to be processed. An 
example is shown in Figure 8. 

• Outlier removal: When the new coming data is an 
outlier, SF approximation line extension will stop 
immediately and start a new line. Outliers also afflict 
our method, but because of the global view of data, it is 
possible to locate outliers and deal with them through 
the outlier removal procedure. An example is shown in 
Figure 9. 

Table 3 lists the execution time of our proposed method 
and SF. Beyond our expectations, the execution time of our 
method is basically on par with SF. In some cases, our 
proposed method is slower than SF; however in other cases 
the result is reversed. The execution time of SF is largely 
based on the stability of dataset. SF will extend the line as 
longer as much as possible. When it comes a new data point, 
SF will draw two lines for each point in the line segments with 
the new point, which means longer line segments will 
consume much more time than line segments of shorter length. 

Our proposed method is much stable than SF in execution 
time because the same amount of linear regression are used in 
different datasets. For a data segment of 16 sensors with 3,072 
data each, our method requires 0.23~0.39 seconds to execute, 
while SF needs 0.08~0.63 seconds. 

C. Comparison of our four procedures 
To better understand how the proposed method works, the 

statistics of bit rate and distortion of four key procedures are 
listed in Table 4. 

Unlike comparing with SF, we fix the target distortion so 
we are able to determine the effectiveness of each procedure 
in terms of distortion and bit rate. 

It is interesting to note that distortions are reduced in some 
test cases (i.e. radiation, temperature, and CO2) when we apply 
ORDA. The main goal of ORDA, as listed in Table 4, is for 
bit rate reduction. As expected, the NRMSE values are raised 
because we share the allocated distortion to multiple/all 
sensors which necessitate more distortion to reduce their 
compression rate. It is also apparent that the NRMSEs of these 
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datasets are raised when ORDA is applied. So we can infer 
that this is because the NRMSE is a normalizing parameter 
which is affected by the difference between maximum data 
and minimum data. The unanticipated results of the NRMSE 
values may be caused by the sensors being allocated larger 
target distortions to also acquire greater differentials between 
their max and min data. 

 
Table 3: Execution time (seconds) compared with SF. 

 Proposed Method Slide Filter 
moisture 0.281 0.56 
humidity 0.234 0.357 
lysimeter 0.265 0.0829 
snow-height 0.281 0.632 
temperature 0.25 0.345 
CO2 0.328 0.104 
radiation 0.296 0.151 
wind-direction 0.391 0.0809 

 
Table 4: Bit rate and distortion of four key procedures. 

 Tree 
Pruning 

ORDA Pairwise 
Merging 

Outlier 
Removal and 

Merging 
 Bit Rate 
moisture 7.7% 6.6% 5.0% 3.5% 
humidity 0.68% 0.60% 0.60% 0.61% 
lysimeter 2.4% 1.7% 1.1% 0.9% 
snow-height 12.3% 11.6% 9.4% 7.9% 
temperature 2.6% 2.0% 1.6% 1.5% 
CO2 12.0% 10.7% 8.2% 5.5% 
radiation 18.2% 16.2% 14.3% 12.1% 
wind-direction 21.7% 20.9% 17.0% 14.2% 
 NRMSE 
moisture 6.1% 6.5% 6.8% 8.2% 
humidity 6.4% 6.7% 6.7% 6.7% 
lysimeter 5.4% 5.5% 5.6% 7.7% 
snow-height 2.1% 2.4% 3.4% 2.8% 
temperature 6.5% 6.3% 6.4% 7.6% 
CO2 6.7% 6.7% 6.8% 6.9% 
radiation 6.9% 6.4% 6.7% 6,4% 
wind-direction 6.2% 6.2% 6.2% 6.5% 

With the addition of the ORDA step, the reduction in 
compression ratio highly fluctuates in each case. The result is 
highly depends on the differences between sensors in the same 
test case. In this step, manually tuning the target distortion 
sensor by sensor does not affect the outcome. 

The merge step and outlier removal step lower almost the 
same compression ratio in every test case, but the NRMSE 
increases in the outlier removal step are much drastically than 
it increases in the merging step. 

Table 5 lists the execution time of the seven steps. The 
Outlier Removal procedure is included in the Merging step, 
because after Outlier Removal, the Merging step is processed 
again. The “LR” in this table represents the total time of all 
linear regression in our method. We can observe that the 
Initial step demands the most time because the step has to 
calculate most of the linear regression in the tree. Linear 
regression is not only utilized in the Initial step, but is also 
applied in the Merging step and the Outlier step, thus the 

execution time of the Outlier step affects the execution time of 
total linear regression. 

 
Table 5: Execution time (seconds) of each step. 

 Initial Pruning ORDA Merging Outlier Data 
read 

LR 

moisture 0.094 0.031 0.031 0.047 0.031 0.078 0.079 

humidity 0.062 0.047 0.016 0.031 0.016 0.078 0.078 

lysimeter 0.142 0.048 0.04 0.015 0.015 0.015 0.062 

snow-height 0.077 0.031 0.016 0.063 0.031 0.078 0.093 

temperature 0.126 0.048 0.015 0.015 0.015 0.046 0.062 

CO2 0.124 0.032 0.031 0.032 0.032 0.031 0.093 

radiation 0.111 0.047 0.015 0.077 0.062 0.03 0.172 

wind-
direction 

0.128 0.031 0.046 0.124 0.078 0.046 0.142 

D. Comparing with different window sizes 
The different window sizes, 1024, 512, and 256 are also 

considered as shown in Table 6. Bit rate can be reduced as 
window size increased. The complete tree contains more data 
when window size become larger, otherwise less data is 
included in complete tree. Thus, the efficiency of compression 
drops as the window size is small and the bit rate grows as 
well. 

Table 6: The comparison of different window sizes. 
 W=1024 W=512 W=256 

Rate 
moisture 2.62% 3.64% 4.97% 
humidity 0.48% 0.61% 0.94% 
lysimeter 0.81% 0.96% 1.34% 
snow-height 7.86% 7.96% 8.22% 
temperature 1.41% 1.54% 1.78% 
CO2 6.04% 5.96% 6.08% 
radiation 12.13% 12.21% 12.29% 
wind-direction 14.53% 14.38% 14.18% 

NRMSE 
moisture 6.82% 6.48% 6.24% 
humidity 7.66% 6.73% 5.69% 
lysimeter 5.86% 5.63% 5.13% 
snow-height 2.52% 2.46% 2.36% 
temperature 7.27% 6.29% 5.48% 
CO2 6.75% 6.74% 6.75% 
radiation 6.46% 6.44% 6.28% 
wind-direction 6.26% 6.21% 6.06% 

E. Comparing with ST-HDACS 
Here, we roughly compare our proposed spatio-temporal 

method with ST-HDACS because it is the CS-based data 
collection scheme to reduce the transmission redundancy from 
both spatial domain and temporal domain [13]. In the 
simulation results of ST-HDACS, � percent of sensor nodes 
are selected at each collection step. In simulation, the values 
of � are set as 0.25, 0.50, and 0.75, respectively. For the Sea 
Surface Temperature case with � = 0.25, the errors 
(Normalized Mean Absolute Error) are ranging from 2.3% to 
6.8% (for different network sizes) and the corresponding 
energy savings is around 54.3%.  That is, the (energy saving, 
NMAE) pair is (54.3%, 2.3-6.8%), or the (rate, NMAE) pair is 
roughly equal to (25%, 2.3-6.8%). And ours (rate, NRMSE) is 
(1.78%, 5.48%) as shown in the row temperature of Table 6. 
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In [11], the energy model consists of computation and 
communication costs, and the communication cost is 
proportional to the amount of data in transmission. 

V. CONCLUSION 
In this paper, a spatio-temporal tree-structured linear 

approximation scheme for serving heterogeneous sensors 
simultaneously is presented. The main contributions are two: 
(1) providing an efficient bottom-up procedure to explore the 
best-fit piecewise solutions instead of scanning approach as 
SF; (2) considering the heterogeneity of sensors 
simultaneously using the R-D distortion allocation so as to 
maximize the distortion usage.  

A real-world dataset simulation is applied to demonstrate 
the effectiveness of the model. The results of proposed method 
are compared with SF and ST-HDACS. For nearly all test 
datasets, the proposed method shows better performance than 
SF and ST-HDACS in terms of data reduction under similar 
distortion condition. The comparison of execution time as 
given, our method is basically on a par with SF. The statistics 
of bit rate and distortion of our four key procedures are listed. 
Bit rate are all reduced when we apply optimal distortion 
allocation because of the consideration of the heterogeneity of 
sensors spatially. Some sensors which necessitate more 
distortion to reduce their compression rate will be assigned the 
suitable amount since the distortion is sharable. 
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Figure 8: A demonstrative example. 
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